Bifocal hybrid laser beam welding and friction stir welding of aluminium extrusion components

Michael F. Zaeh, Paul Gebhard, Sonja Huber, Markus Ruhstorfer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

On a global market, new products are subject to rising requirements regarding strength and quality. Simultaneously, the conservation of the environment and natural resources has become a key priority. One approach to these demands is the weight reduction of mechanical components by lightweight construction. The Transregional Collaborative Research Center (TR 10), funded by the German Research Foundation (DFG), is therefore working on the "Integration of forming, cutting and joining for the flexible production of lightweight space structures". The use of light metals, like aluminium and composite materials is a main part in the TR10 process chain. This paper deals with the challenges of welding of light weight components made out of EN AW-6060. It shows the use and potentials of two innovative joining processes, particularly suited for welding aluminium. Especially developed for the fusion welding of aluminium components, BHLW (Bifocal Hybrid Laser Beam Welding), combines a Nd:YAG and a high power diode laser. The paper will give insight into the findings of the achieved results so far and line out the further proceedings with regard to critical parameters and their effect on the overall laser welding process. For the welding of aluminium composite materials, which play a big role in the TR10 process chain, Friction Stir Welding (FSW) is evaluated. As a solid state joining process, it can be used for the welding of materials that are hardly weldable with fusion welding techniques. In this paper, results of basic experiment for the joining of reinforced aluminium and the resulting process forces are presented.

Original languageEnglish
Title of host publicationFlexible Manufacture of Lightweight Frame Structures - Phase 2
Subtitle of host publicationIntegration
PublisherTrans Tech Publications
Pages69-80
Number of pages12
ISBN (Print)0878493859, 9780878493852
DOIs
StatePublished - 2008

Publication series

NameAdvanced Materials Research
Volume43
ISSN (Print)1022-6680

Keywords

  • Aluminium
  • Bifocal
  • EN AW-6060
  • Friction stir welding
  • Hybrid
  • Laser welding
  • Reinforced extrusion

Fingerprint

Dive into the research topics of 'Bifocal hybrid laser beam welding and friction stir welding of aluminium extrusion components'. Together they form a unique fingerprint.

Cite this