TY - GEN
T1 - Belief propagation based MIMO detection operating on quantized channel output
AU - Mezghani, Amine
AU - Nossek, Josef A.
PY - 2010
Y1 - 2010
N2 - In multiple-antenna communications, as bandwidth and modulation order increase, system components must work with demanding tolerances. In particular, high resolution and high sampling rate analog-to-digital converters (ADCs) are often prohibitively challenging to design. Therefore ADCs for such applications should be low-resolution. This paper provides new insights into the problem of optimal signal detection based on quantized received signals for multiple-input multiple-output (MIMO) channels. It capitalizes on previous works [1], [2], [3], [4] which extensively analyzed the unquantized linear vector channel using graphical inference methods. In particular, a "loopy" belief propagation-like (BP) MIMO detection algorithm, operating on quantized data with low complexity, is proposed. In addition, we study the impact of finite receiver resolution in fading channels in the large-system limit by means of a state evolution analysis of the BP algorithm, which refers to the limit where the number of transmit and receive antennas go to infinity with a fixed ratio. Simulations show that the theoretical findings might give accurate results even with moderate number of antennas.
AB - In multiple-antenna communications, as bandwidth and modulation order increase, system components must work with demanding tolerances. In particular, high resolution and high sampling rate analog-to-digital converters (ADCs) are often prohibitively challenging to design. Therefore ADCs for such applications should be low-resolution. This paper provides new insights into the problem of optimal signal detection based on quantized received signals for multiple-input multiple-output (MIMO) channels. It capitalizes on previous works [1], [2], [3], [4] which extensively analyzed the unquantized linear vector channel using graphical inference methods. In particular, a "loopy" belief propagation-like (BP) MIMO detection algorithm, operating on quantized data with low complexity, is proposed. In addition, we study the impact of finite receiver resolution in fading channels in the large-system limit by means of a state evolution analysis of the BP algorithm, which refers to the limit where the number of transmit and receive antennas go to infinity with a fixed ratio. Simulations show that the theoretical findings might give accurate results even with moderate number of antennas.
UR - http://www.scopus.com/inward/record.url?scp=77955705205&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2010.5513404
DO - 10.1109/ISIT.2010.5513404
M3 - Conference contribution
AN - SCOPUS:77955705205
SN - 9781424469604
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 2113
EP - 2117
BT - 2010 IEEE International Symposium on Information Theory, ISIT 2010 - Proceedings
T2 - 2010 IEEE International Symposium on Information Theory, ISIT 2010
Y2 - 13 June 2010 through 18 June 2010
ER -