Bayesian model selection of regular vine copulas

Lutz F. Gruber, Claudia Czado

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Regular vine copulas are a flexible class of dependence models, but Bayesian methodology for model selection and inference is not yet fully developed. We propose sparsity-inducing but otherwise non-informative priors, and present novel proposals to enable reversible jump Markov chain Monte Carlo posterior simulation for Bayesian model selection and inference. Our method is the first to jointly estimate the posterior distribution of all trees of a regular vine copula. This represents a substantial improvement over existing frequentist and Bayesian strategies, which can only select one tree at a time and are known to induce bias. A simulation study demonstrates the feasibility of our strategy and shows that it combines superior selection and reduced computation time compared to Bayesian tree-by-tree selection. In a real data example, we forecast the daily expected tail loss of a portfolio of nine exchange-traded funds using a fully Bayesian multivariate dynamic model built around Bayesian regular vine copulas to illustrate our model's viability for financial analysis and risk estimation.

Original languageEnglish
Pages (from-to)1107-1131
Number of pages25
JournalBayesian Analysis
Volume13
Issue number4
DOIs
StatePublished - 2018

Keywords

  • Bayesian inference
  • Copula modeling
  • Dependence modeling
  • Financial analysis
  • Importance sampling
  • Multivariate analysis
  • Posterior simulation
  • Risk forecasting
  • Simulation studies
  • Vine copulas

Fingerprint

Dive into the research topics of 'Bayesian model selection of regular vine copulas'. Together they form a unique fingerprint.

Cite this