Abstract
QTL-analysis (quantitative trait loci) and marker development rely on efficient phenotyping techniques. Objectivity and precision of a phenotypic data evaluation is crucial but time consuming. In the present study a high-throughput image interpretation tool was developed to acquire automatically number, size, and volume of grape berries from RGB (red-green-blue) images. Individual berries of one cluster were placed on a black construction (300 x 300 mm) to take a RGB image from the top. The image interpretation of one dataset with an arbitrary number of images runs automatically using the BAT (Berry-Analysis-Tool) developed in MATLAB. For validation of results, the number of berries was counted and their size was measured using a digital calliper. A measuring cylinder was used to determine reliably the berry volume by displacement of water. All placed berries could be counted by BAT 100 % correctly. Manual ratings compared with BAT ratings showed strong correlation of r = 0.96 for mean berry diameter/image and r = 0.98 for cluster volume.
Original language | English |
---|---|
Pages (from-to) | 129-135 |
Number of pages | 7 |
Journal | Vitis |
Volume | 52 |
Issue number | 3 |
State | Published - 2013 |
Externally published | Yes |
Keywords
- Berry morphology
- Grapevine berry size
- HT-phenotyping
- Image interpretation