TY - GEN
T1 - Base station concepts of an automatic fluid intake monitoring system
AU - Kreutzer, Joachim F.
AU - Kosch, Florian
AU - Ramesberger, Stefan
AU - Reimer, Samuel M.F.
AU - Lueth, Tim C.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015
Y1 - 2015
N2 - This contribution presents different concepts for base stations complementing a fluid intake monitoring system. The motivation behind this research is the high amount of dehydration diagnoses in hospitals. Affected patients are almost exclusively elderly people. Therefore a monitoring system is needed that is able to detect insufficient fluid intake, especially designed for this demographic group. The foundation of this system is based on smart sensor cups which are able to deduce fluid intake by detecting the filling level. This paper focuses on complementary devices for these cups which are necessary in order to build an exhaustive monitoring system. Depending on the intended scenario, the primary functions are charging the sensor cups and receiving and displaying data. This data is either displayed for an immediate feedback or subsequently transferred to a central server for storage in a database or further processing. This contribution presents three different concepts: a simple multi charging station for up to four cups simultaneously, a stand-alone base station able to charge and display informations gathered by one sensor cup and a network-compatible base station for several cups. The system mentioned last is also able to transfer their data via Ethernet to a server. The interface between sensor cup and system as well as their intended use are presented in detail for each concept. The evaluation concentrates on the reliability of a system build on scenarios around the network-compatible base station.
AB - This contribution presents different concepts for base stations complementing a fluid intake monitoring system. The motivation behind this research is the high amount of dehydration diagnoses in hospitals. Affected patients are almost exclusively elderly people. Therefore a monitoring system is needed that is able to detect insufficient fluid intake, especially designed for this demographic group. The foundation of this system is based on smart sensor cups which are able to deduce fluid intake by detecting the filling level. This paper focuses on complementary devices for these cups which are necessary in order to build an exhaustive monitoring system. Depending on the intended scenario, the primary functions are charging the sensor cups and receiving and displaying data. This data is either displayed for an immediate feedback or subsequently transferred to a central server for storage in a database or further processing. This contribution presents three different concepts: a simple multi charging station for up to four cups simultaneously, a stand-alone base station able to charge and display informations gathered by one sensor cup and a network-compatible base station for several cups. The system mentioned last is also able to transfer their data via Ethernet to a server. The interface between sensor cup and system as well as their intended use are presented in detail for each concept. The evaluation concentrates on the reliability of a system build on scenarios around the network-compatible base station.
UR - http://www.scopus.com/inward/record.url?scp=84964556579&partnerID=8YFLogxK
U2 - 10.1109/ROBIO.2015.7418755
DO - 10.1109/ROBIO.2015.7418755
M3 - Conference contribution
AN - SCOPUS:84964556579
T3 - 2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015
SP - 126
EP - 131
BT - 2015 IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - IEEE International Conference on Robotics and Biomimetics, IEEE-ROBIO 2015
Y2 - 6 December 2015 through 9 December 2015
ER -