Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals

Marius Schild, Aaron Ruhs, Thomas Beiter, Martina Zügel, Jens Hudemann, Anna Reimer, Ilke Krumholz-Wagner, Carola Wagner, Janine Keller, Klaus Eder, Karsten Krüger, Marcus Krüger, Thomas Braun, Andreas Nieß, Jürgen Steinacker, Frank C. Mooren

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Morphological and metabolic adaptations of the human skeletal muscle to exercise are crucial to improve performance and prevent chronic diseases and metabolic disorders. In this study we investigated human skeletal muscle protein composition in endurance trained (ET) versus untrained individuals (UT) and its modulation by an acute bout of endurance exercise. Participants were recruited based on their VO2max and subjected to a bicycle exercise test. M. vastus lateralis biopsies were taken before and three hours after exercise. Muscle lysates were analyzed using off-gel LC-MS/MS. Relative protein abundances were compared between ET and UT at rest and after exercise. Comparing UT and ET, we identified 92 significantly changed proteins under resting conditions. Specifically, fiber-type-specific and proteins of the oxidative phosphorylation and tricarboxylic acid cycle were increased in ET. In response to acute exercise, 71 proteins in ET and 44 in UT were altered. Here, a decrease of proteins involved in energy metabolism accompanied with alterations of heat shock and proteasomal proteins could be observed. In summary, long-term endurance training increased the basal level of structural and mitochondrial proteins in skeletal muscle. In contrast, acute exercise resulted in a depletion of proteins related to substrate utilization, especially in trained athletes. Biological significance: The investigation of the human skeletal muscle proteome in response to exercise may provide novel insights into the process of muscular plasticity. It is of importance in the development of exercise-based strategies in the prevention and therapy of many chronic inflammatory and degenerative diseases which are often accompanied by muscular deconditioning. Up to date, proteomic investigations of the human muscle proteome in adaptation to exercise are mainly focused on untrained individuals and often restricted to animal studies. In the present study we compare the protein composition in endurance trained athletes and untrained individuals in the resting muscle and its modulation in response to acute exercise. To our knowledge, we present the first comprehensive analysis of skeletal muscle proteome alterations in response to acute and long-term exercise intervention.

Original languageEnglish
Pages (from-to)119-132
Number of pages14
JournalJournal of Proteomics
Volume122
DOIs
StatePublished - 3 Jun 2015
Externally publishedYes

Keywords

  • Endurance exercise
  • Energy metabolism
  • Label free mass spectrometry
  • Muscular plasticity
  • Oxidative phosphorylation
  • Skeletal muscle proteome

Fingerprint

Dive into the research topics of 'Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals'. Together they form a unique fingerprint.

Cite this