TY - JOUR
T1 - Azimuthal sound localization in the chicken
AU - Maldarelli, Gianmarco
AU - Firzlaff, Uwe
AU - Luksch, Harald
N1 - Publisher Copyright:
© 2022 Maldarelli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/11
Y1 - 2022/11
N2 - Sound localization is crucial for the survival and reproduction of animals, including non-auditory specialist animals such as the majority of avian species. The chicken (Gallus gallus) is a well-suited representative of a non-auditory specialist bird and several aspects of its auditory system have been well studied in the last decades. We conducted a behavioral experiment where 3 roosters performed a sound localization task with broad-band noise, using a 2-alter-native forced choice paradigm. We determined the minimum audible angle (MAA) as measure for localization acuity. In general, our results compare to previous MAA measurements with hens in Go/NoGo tasks. The chicken has high localization acuity compared to other auditory generalist bird species tested so far. We found that chickens were better at localizing broadband noise with long duration (1 s; MAA = 16°) compared to brief duration (0.1 s; MAA = 26°). Moreover, the interaural difference in time of arrival and level (ITD and ILD, respectively) at these MAAs are comparable to what measured in other non-auditory specialist bird species, indicating that they might be sufficiently broad to be informative for azimuthal sound localization.
AB - Sound localization is crucial for the survival and reproduction of animals, including non-auditory specialist animals such as the majority of avian species. The chicken (Gallus gallus) is a well-suited representative of a non-auditory specialist bird and several aspects of its auditory system have been well studied in the last decades. We conducted a behavioral experiment where 3 roosters performed a sound localization task with broad-band noise, using a 2-alter-native forced choice paradigm. We determined the minimum audible angle (MAA) as measure for localization acuity. In general, our results compare to previous MAA measurements with hens in Go/NoGo tasks. The chicken has high localization acuity compared to other auditory generalist bird species tested so far. We found that chickens were better at localizing broadband noise with long duration (1 s; MAA = 16°) compared to brief duration (0.1 s; MAA = 26°). Moreover, the interaural difference in time of arrival and level (ITD and ILD, respectively) at these MAAs are comparable to what measured in other non-auditory specialist bird species, indicating that they might be sufficiently broad to be informative for azimuthal sound localization.
UR - http://www.scopus.com/inward/record.url?scp=85142918542&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0277190
DO - 10.1371/journal.pone.0277190
M3 - Article
C2 - 36413534
AN - SCOPUS:85142918542
SN - 1932-6203
VL - 17
JO - PLoS ONE
JF - PLoS ONE
IS - 11 November
M1 - e0277190
ER -