Autonomous self-healing hybrid energy harvester based on the combination of triboelectric nanogenerator and quantum dot solar cell

Tianxiao Xiao, Suo Tu, Ting Tian, Wei Chen, Wei Cao, Suzhe Liang, Renjun Guo, Liangzhen Liu, Yanan Li, Tianfu Guan, Haochen Liu, Kai Wang, Matthias Schwartzkopf, Roland A. Fischer, Stephan V. Roth, Peter Müller-Buschbaum

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Realization of multi-source energy harvesting with one single device would maximize power output. Thus, it is emerging as a promising strategy towards renewable energy generation and has attracted worldwide attention in the past decades. Capable of capturing mechanical energy that is ubiquitous in the ambient environment, triboelectric nanogenerator (TENG) has been considered a novel yet effective source towards next-generation energy harvesting. In this work, a flexible hybrid energy harvester (HEH) is developed via the rational integration of autonomous self-healing TENG and high bending-stable lead sulfide quantum dot (PbS QD) solar cell, enabling independent electricity generation by two different mechanisms. The single-electrode mode TENG component with self-healing is realized by a polydimethylsiloxane/Triton X-100 (PDMS/TX100) mixture as the dielectric layer and the shared gold (Au) electrode, which generates 0.39 µA of output current (Iout), 24.6 V of output voltages (Vout), 15.4 nC of transfer charges (Qsc), and 7.80 mW m−2 of output power peak density. The thin-film solar cell component is based on a PbS QD layer as the light absorber with a planar structure fabricated under low-cost and compatible conditions, achieving 22.8 mA cm−2 of short-circuit current density (Jsc) and 4.92% of power conversion efficiency (PCE). As a proof of concept, an electronic watch is successfully powered by harnessing ambient mechanical and solar energy with a hybridized energy cell. This approach will offer more opportunities to construct a versatile platform towards remote monitoring and smart home systems.

Original languageEnglish
Article number109555
JournalNano Energy
Volume125
DOIs
StatePublished - 15 Jun 2024

Keywords

  • Autonomous self-healing
  • Grazing-incidence X-ray scattering
  • Hybrid energy harvester
  • Quantum dot solar cell
  • Triboelectric nanogenerator

Fingerprint

Dive into the research topics of 'Autonomous self-healing hybrid energy harvester based on the combination of triboelectric nanogenerator and quantum dot solar cell'. Together they form a unique fingerprint.

Cite this