TY - GEN
T1 - Automatic segmentation and identification of solitary pulmonary nodules on follow-up CT scans based on local intensity structure analysis and non-rigid image registration
AU - Chen, Bin
AU - Naito, Hideto
AU - Nakamura, Yoshihiko
AU - Kitasaka, Takayuki
AU - Rueckert, Daniel
AU - Honma, Hirotoshi
AU - Takabatake, Hirotsugu
AU - Mori, Masaki
AU - Natori, Hiroshi
AU - Mori, Kensaku
PY - 2011
Y1 - 2011
N2 - This paper presents a novel method that can automatically segment solitary pulmonary nodule (SPN) and match such segmented SPNs on follow-up thoracic CT scans. Due to the clinical importance, a physician needs to find SPNs on chest CT and observe its progress over time in order to diagnose whether it is benign or malignant, or to observe the effect of chemotherapy for malignant ones using follow-up data. However, the enormous amount of CT images makes large burden tasks to a physician. In order to lighten this burden, we developed a method for automatic segmentation and assisting observation of SPNs in follow-up CT scans. The SPNs on input 3D thoracic CT scan are segmented based on local intensity structure analysis and the information of pulmonary blood vessels. To compensate lung deformation, we co-register follow-up CT scans based on an affine and a non-rigid registration. Finally, the matches of detected nodules are found from registered CT scans based on a similarity measurement calculation. We applied these methods to three patients including 14 thoracic CT scans. Our segmentation method detected 96.7% of SPNs from the whole images, and the nodule matching method found 83.3% correspondences from segmented SPNs. The results also show our matching method is robust to the growth of SPN, including integration/separation and appearance/disappearance. These confirmed our method is feasible for segmenting and identifying SPNs on follow-up CT scans.
AB - This paper presents a novel method that can automatically segment solitary pulmonary nodule (SPN) and match such segmented SPNs on follow-up thoracic CT scans. Due to the clinical importance, a physician needs to find SPNs on chest CT and observe its progress over time in order to diagnose whether it is benign or malignant, or to observe the effect of chemotherapy for malignant ones using follow-up data. However, the enormous amount of CT images makes large burden tasks to a physician. In order to lighten this burden, we developed a method for automatic segmentation and assisting observation of SPNs in follow-up CT scans. The SPNs on input 3D thoracic CT scan are segmented based on local intensity structure analysis and the information of pulmonary blood vessels. To compensate lung deformation, we co-register follow-up CT scans based on an affine and a non-rigid registration. Finally, the matches of detected nodules are found from registered CT scans based on a similarity measurement calculation. We applied these methods to three patients including 14 thoracic CT scans. Our segmentation method detected 96.7% of SPNs from the whole images, and the nodule matching method found 83.3% correspondences from segmented SPNs. The results also show our matching method is robust to the growth of SPN, including integration/separation and appearance/disappearance. These confirmed our method is feasible for segmenting and identifying SPNs on follow-up CT scans.
KW - computer-aided diagnosis
KW - matching
KW - segmentation
KW - solitary pulmonary nodule
UR - http://www.scopus.com/inward/record.url?scp=79955762820&partnerID=8YFLogxK
U2 - 10.1117/12.878731
DO - 10.1117/12.878731
M3 - Conference contribution
AN - SCOPUS:79955762820
SN - 9780819485052
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2011
T2 - Medical Imaging 2011: Computer-Aided Diagnosis
Y2 - 15 February 2011 through 17 February 2011
ER -