Automatic Detection of Blood Vessels in Optical Coherence Tomography Scans

Julia Hofmann, Melanie Böge, Szymon Gladysz, Boris Jutzi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The aim of this research is to develop a new automated blood vessel (BV) detection algorithm for optical coherence tomography (OCT) scans and corresponding fundus images. The algorithm provides a robust method to detect BV shadows (BVSs) using Radon transformation and other supporting image processing methods. The position of the BVSs is determined in OCT scans and the BV thickness is measured in the fundus images. Additionally, the correlation between BVS thickness and retinal nerve fiber layer (RNFL) thickness is determined. This correlation is of great interest since glaucoma, for example, can be identified by a loss of RNFL thickness.

Original languageEnglish
Title of host publicationBildverarbeitung für die Medizin 2019
Subtitle of host publicationAlgorithmen – Systeme – Anwendungen - Proceedings des Workshops vom 17. bis 19. März 2019
EditorsChristoph Palm, Thomas Tolxdorff, Thomas M. Deserno, Klaus H. Maier-Hein, Andreas Maier, Heinz Handels
PublisherSpringer Berlin Heidelberg
Pages2-7
Number of pages6
ISBN (Print)9783658253257
DOIs
StatePublished - 2019
Externally publishedYes
EventWorkshop on Bildverarbeitung fur die Medizin, 2019 - Lübeck, Germany
Duration: 17 Mar 201919 Mar 2019

Publication series

NameInformatik aktuell
ISSN (Print)1431-472X

Conference

ConferenceWorkshop on Bildverarbeitung fur die Medizin, 2019
Country/TerritoryGermany
CityLübeck
Period17/03/1919/03/19

Fingerprint

Dive into the research topics of 'Automatic Detection of Blood Vessels in Optical Coherence Tomography Scans'. Together they form a unique fingerprint.

Cite this