Abstract
In combination with PET, the tracer 13N-ammonia can be employed for the noninvasive quantification of myocardial perfusion at rest and after pharmacological stress. The purpose of this study was to develop an analysis method for the quantification of regional myocardial blood flow in the clinical setting. The algorithm includes correction for patient motion, an automated definition of multiple regions and display of absolute flows in polar map format. The effects of partial volume and blood to tissue cross- contamination were accounted for by optimizing the radial position of regions to meet fundamental assumptions of the kinetic model. In order to correct for motion artifacts, the myocardial displacement was manually determined based on edge-enhanced images. The obtained results exhibit the capability of the presented algorithm to noninvasively assess regional myocardial perfusion in the clinical environment.
Original language | English |
---|---|
Pages (from-to) | 336-344 |
Number of pages | 9 |
Journal | Journal of Nuclear Medicine |
Volume | 34 |
Issue number | 2 |
State | Published - 1993 |
Externally published | Yes |