Automated label-free quantification of metabolites from liquid chromatography-mass spectrometry data

Erhan Kenar, Holger Franken, Sara Forcisi, Kilian Wörmann, Hans Ulrich Häring, Rainer Lehmann, Philippe Schmitt-Kopplin, Andreas Zell, Oliver Kohlbacher

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Liquid chromatography coupled to mass spectrometry (LC-MS) has become a standard technology in metabolomics. In particular, label-free quantification based on LC-MS is easily amenable to large-scale studies and thus well suited to clinical metabolomics. Large-scale studies, however, require automated processing of the large and complex LC-MS datasets. We present a novel algorithm for the detection of mass traces and their aggregation into features (i.e. all signals caused by the same analyte species) that is computationally efficient and sensitive and that leads to reproducible quantification results. The algorithm is based on a sensitive detection of mass traces, which are then assembled into features based on mass-to-charge spacing, co-elution information, and a support vector machine-based classifier able to identify potential metabolite isotope patterns. The algorithm is not limited to metabolites but is applicable to a wide range of small molecules (e.g. lipidomics, peptidomics), as well as to other separation technologies. We assessed the algorithm's robustness with regard to varying noise levels on synthetic data and then validated the approach on experimental data investigating human plasma samples. We obtained excellent results in a fully automated data-processing pipeline with respect to both accuracy and reproducibility. Relative to state-of-the art algorithms, ours demonstrated increased precision and recall of the method. The algorithm is available as part of the open-source software package OpenMS and runs on all major operating systems. Molecular & Cellular Proteomics 13: 10.1074/mcp.M113.031278, 348-359, 2014.

Original languageEnglish
Pages (from-to)348-359
Number of pages12
JournalMolecular and Cellular Proteomics
Volume13
Issue number1
DOIs
StatePublished - Jan 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Automated label-free quantification of metabolites from liquid chromatography-mass spectrometry data'. Together they form a unique fingerprint.

Cite this