AutoGAN-Synthesizer: Neural Architecture Search for Cross-Modality MRI Synthesis

Xiaobin Hu, Ruolin Shen, Donghao Luo, Ying Tai, Chengjie Wang, Bjoern H. Menze

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Considering the difficulty to obtain complete multi-modality MRI scans in some real-world data acquisition situations, synthesizing MRI data is a highly relevant and important topic to complement diagnosis information in clinical practice. In this study, we present a novel MRI synthesizer, called AutoGAN-Synthesizer, which automatically discovers generative networks for cross-modality MRI synthesis. Our AutoGAN-Synthesizer adopts gradient-based search strategies to explore the generator architecture by determining how to fuse multi-resolution features and utilizes GAN-based perceptual searching losses to handle the trade-off between model complexity and performance. Our AutoGAN-Synthesizer can search for a remarkable and light-weight architecture with 6.31 Mb parameters only occupying 12 GPU hours. Moreover, to incorporate richer prior knowledge for MRI synthesis, we derive K-space features containing the low- and high-spatial frequency information and incorporate such features into our model. To our best knowledge, this is the first work to explore AutoML for cross-modality MRI synthesis, and our approach is also capable of tailoring networks given either different multiple modalities or just a single modality as input. Extensive experiments show that our AutoGAN-Synthesizer outperforms the state-of-the-art MRI synthesis methods both quantitatively and qualitatively. The code are available at https://github.com/HUuxiaobin/AutoGAN-Synthesizer.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages397-409
Number of pages13
ISBN (Print)9783031164453
DOIs
StatePublished - 2022
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13436 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

Keywords

  • Cross-modality MRI synthesis
  • Generative adversarial networks
  • Neural architecture search

Fingerprint

Dive into the research topics of 'AutoGAN-Synthesizer: Neural Architecture Search for Cross-Modality MRI Synthesis'. Together they form a unique fingerprint.

Cite this