Auditory filterbanks benefit universal sound source separation

Han Li, Kean Chen, Bernhard U. Seeber

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations

Abstract

For separating two arbitrary sources from monaural recordings, the encoder-separator-decoder framework is popular in recent years. We investigated three kinds of filterbanks in the encoder: free, parameterized, and fixed. We proposed parameterized Gammatone and Gammachirp filterbanks, which improved performance with fewer parameters and better interpretability. Next, the properties of different filterbanks were investigated. Through training the network, an entirely freely learned filterbank emerges with properties similar to a series of bandpass filters spaced on a nonlinear scale - similar to the auditory system. We also explored the underlying separation mechanisms learned by the network through a classic auditory segregation experiment, revealing that the model separates mixtures based on the general principle (proximity of frequency and time). In summary, results demonstrate that the separation network automatically picks up the filterbank properties and separation mechanisms that are similar to those which have developed over millions of years in humans.

Original languageEnglish
Pages (from-to)181-185
Number of pages5
JournalICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2021-June
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
Duration: 6 Jun 202111 Jun 2021

Keywords

  • Learnable filterbank
  • Separation mechanisms
  • Universal source separation

Fingerprint

Dive into the research topics of 'Auditory filterbanks benefit universal sound source separation'. Together they form a unique fingerprint.

Cite this