Assessing the impact of parametric uncertainty on tipping points of the Atlantic meridional overturning circulation

Kerstin Lux, Peter Ashwin, Richard Wood, Christian Kuehn

Research output: Contribution to journalArticlepeer-review

Abstract

Various elements of the Earth system have the potential to undergo critical transitions to a radically different state, under sustained changes to climate forcing. The Atlantic meridional overturning circulation (AMOC) is of particular importance for North Atlantic heat transport and is thought to be potentially at risk of passing such a tipping point (TP). In climate models, the location and likelihood of such TPs depends on model parameters that may be poorly known. Reducing this parametric uncertainty is important to understand the likelihood of tipping behaviour. In this letter, we develop estimates for parametric uncertainty in a simple model of AMOC tipping, using a Bayesian inversion technique. When applied using synthetic ('perfect model') salinity timeseries data, the technique drastically reduces the uncertainty in model parameters, compared to prior estimates derived from previous literature, resulting in tighter constraints on the AMOC TPs. To visualise the impact of parametric uncertainty on TPs, we extend classical tipping diagrams by showing probabilistic bifurcation curves according to the inferred distribution of the model parameter, allowing the uncertain locations of TPs along the probabilistic bifurcation curves to be highlighted. Our results show that suitable palaeo-proxy timeseries may contain enough information to assess the likely position of AMOC (and potentially other Earth system) TPs, even in cases where no tipping occurred during the period of the proxy data.

Original languageEnglish
Article number075002
JournalEnvironmental Research Letters
Volume17
Issue number7
DOIs
StatePublished - 1 Jul 2022

Keywords

  • AMOC box model
  • Bayesian inference
  • parameter estimation
  • parametric uncertainty
  • probabilistic bifurcation curves
  • tipping point

Fingerprint

Dive into the research topics of 'Assessing the impact of parametric uncertainty on tipping points of the Atlantic meridional overturning circulation'. Together they form a unique fingerprint.

Cite this