Area-Efficient Hardware Parallelization of Neural Network CD Equalizers for 4×200 Gb/s PAM4 CWDM4 Systems

Bo Liu, Christian Bluemm, Stefano Calabr`o, Bing Li, Ulf Schlichtmann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We compare hardware parallelization of CD equalizers on 10 km 4x200 Gb/s IM/DD PAM4 O-band measurements. A single neural network equalizer with multiple output symbols saves 20% of reference chip area versus multiple single-symbol output variants and 77% versus Volterra non-linear equalizers. Multi-Task learning enables cost-efficient scenario flexibility.

Original languageEnglish
Title of host publication49th European Conference on Optical Communications, ECOC 2023
PublisherInstitution of Engineering and Technology
Pages139-142
Number of pages4
Volume2023
Edition34
ISBN (Electronic)9781837240241, 9781837240258, 9781837240753, 9781837240814, 9781837240821, 9781837240982, 9781839539268, 9781839539923, 9781839539954
DOIs
StatePublished - 2023
Event49th European Conference on Optical Communications, ECOC 2023 - Hybrid, Glasgow, United Kingdom
Duration: 1 Oct 20235 Oct 2023

Conference

Conference49th European Conference on Optical Communications, ECOC 2023
Country/TerritoryUnited Kingdom
CityHybrid, Glasgow
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'Area-Efficient Hardware Parallelization of Neural Network CD Equalizers for 4×200 Gb/s PAM4 CWDM4 Systems'. Together they form a unique fingerprint.

Cite this