TY - JOUR
T1 - Are Smartwatches a Suitable Tool to Monitor Noise Exposure for Public Health Awareness and Otoprotection?
AU - Fischer, Tim
AU - Schraivogel, Stephan
AU - Caversaccio, Marco
AU - Wimmer, Wilhelm
N1 - Publisher Copyright:
Copyright © 2022 Fischer, Schraivogel, Caversaccio and Wimmer.
PY - 2022/3/23
Y1 - 2022/3/23
N2 - Introduction and Objectives: Noise-induced hearing loss (NIHL) and tinnitus are common problems that can be prevented with hearing protection measures. Sound level meters and noise dosimeters enable to monitor and identify health-threatening occupational or recreational noise, but are limited in their daily application because they are usually difficult to operate, bulky, and expensive. Smartwatches, which are becoming increasingly available and popular, could be a valuable alternative to professional systems. Therefore, the aim of this study was to evaluate the applicability of smartwatches for accurate environmental noise monitoring. Methods: The A-weighted equivalent continuous sound pressure level (LAeq) was recorded and compared between a professional sound level meter and a popular smartwatch. Noise exposure was assessed in 13 occupational and recreational settings, covering a large range of sound pressure levels between 35 and 110 dBA. To assess measurement agreement, a Bland-Altman plot, linear regression, the intra-class correlation coefficient, and descriptive statistics were used. Results: Overall, the smartwatch underestimated the sound level meter measurements by 0.5 dBA (95% confidence interval [0.2, 0.8]). The intra-class correlation coefficient showed excellent agreement between the two devices (ICC = 0.99), ranging from 0.65 (music club) to 0.99 (concert) across settings. The smartwatch's sampling rate decreased significantly with lower sound pressure levels, which could have introduced measurement inaccuracies in dynamic acoustic environments. Conclusions: The assessment of ambient noise with the tested smartwatch is sufficiently accurate and reliable to improve awareness of hazardous noise levels in the personal environment and to conduct exploratory clinical research. For professional and legally binding measurements, we recommend specialized sound level meters or noise dosimeters. In the future, smartwatches will play an important role in monitoring personal noise exposure and will provide a widely available and cost-effective measure for otoprotection.
AB - Introduction and Objectives: Noise-induced hearing loss (NIHL) and tinnitus are common problems that can be prevented with hearing protection measures. Sound level meters and noise dosimeters enable to monitor and identify health-threatening occupational or recreational noise, but are limited in their daily application because they are usually difficult to operate, bulky, and expensive. Smartwatches, which are becoming increasingly available and popular, could be a valuable alternative to professional systems. Therefore, the aim of this study was to evaluate the applicability of smartwatches for accurate environmental noise monitoring. Methods: The A-weighted equivalent continuous sound pressure level (LAeq) was recorded and compared between a professional sound level meter and a popular smartwatch. Noise exposure was assessed in 13 occupational and recreational settings, covering a large range of sound pressure levels between 35 and 110 dBA. To assess measurement agreement, a Bland-Altman plot, linear regression, the intra-class correlation coefficient, and descriptive statistics were used. Results: Overall, the smartwatch underestimated the sound level meter measurements by 0.5 dBA (95% confidence interval [0.2, 0.8]). The intra-class correlation coefficient showed excellent agreement between the two devices (ICC = 0.99), ranging from 0.65 (music club) to 0.99 (concert) across settings. The smartwatch's sampling rate decreased significantly with lower sound pressure levels, which could have introduced measurement inaccuracies in dynamic acoustic environments. Conclusions: The assessment of ambient noise with the tested smartwatch is sufficiently accurate and reliable to improve awareness of hazardous noise levels in the personal environment and to conduct exploratory clinical research. For professional and legally binding measurements, we recommend specialized sound level meters or noise dosimeters. In the future, smartwatches will play an important role in monitoring personal noise exposure and will provide a widely available and cost-effective measure for otoprotection.
KW - L
KW - big data
KW - ecological assessment
KW - noise dosimetry
KW - noise exposure
KW - otoprotection
KW - tinnitus
KW - wearables
UR - http://www.scopus.com/inward/record.url?scp=85128471665&partnerID=8YFLogxK
U2 - 10.3389/fneur.2022.856219
DO - 10.3389/fneur.2022.856219
M3 - Article
AN - SCOPUS:85128471665
SN - 1664-2295
VL - 13
JO - Frontiers in Neurology
JF - Frontiers in Neurology
M1 - 856219
ER -