TY - JOUR
T1 - Are Graph Neural Networks Optimal Approximation Algorithms?
AU - Yau, Morris
AU - Karalias, Nikolaos
AU - Lu, Eric
AU - Xu, Jessica
AU - Jegelka, Stefanie
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - In this work we design graph neural network architectures that capture optimal approximation algorithms for a large class of combinatorial optimization problems, using powerful algorithmic tools from semidefinite programming (SDP). Concretely, we prove that polynomial-sized message-passing GNN's can learn the most powerful polynomial time algorithms for Max Constraint Satisfaction Problems assuming the Unique Games Conjecture. We leverage this result to construct efficient graph neural network architectures, OptGNN, that obtain high-quality approximate solutions on landmark combinatorial optimization problems such as Max-Cut, Min-Vertex-Cover, and Max-3-SAT. Our approach achieves strong empirical results across a wide range of real-world and synthetic datasets against solvers and neural baselines. Finally, we take advantage of OptGNN's ability to capture convex relaxations to design an algorithm for producing bounds on the optimal solution from the learned embeddings of OptGNN.
AB - In this work we design graph neural network architectures that capture optimal approximation algorithms for a large class of combinatorial optimization problems, using powerful algorithmic tools from semidefinite programming (SDP). Concretely, we prove that polynomial-sized message-passing GNN's can learn the most powerful polynomial time algorithms for Max Constraint Satisfaction Problems assuming the Unique Games Conjecture. We leverage this result to construct efficient graph neural network architectures, OptGNN, that obtain high-quality approximate solutions on landmark combinatorial optimization problems such as Max-Cut, Min-Vertex-Cover, and Max-3-SAT. Our approach achieves strong empirical results across a wide range of real-world and synthetic datasets against solvers and neural baselines. Finally, we take advantage of OptGNN's ability to capture convex relaxations to design an algorithm for producing bounds on the optimal solution from the learned embeddings of OptGNN.
UR - http://www.scopus.com/inward/record.url?scp=105000502422&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000502422
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -