TY - JOUR
T1 - Archetypal analysis for sparse representation-based hyperspectral sub-pixel quantification
AU - Drees, Lukas
AU - Roscher, Ribana
AU - Wenzel, Susanne
N1 - Publisher Copyright:
© 2018 American Society for Photogrammetry and Remote Sensing.
PY - 2018/5
Y1 - 2018/5
N2 - The estimation of land cover fractions from remote sensing images is a frequently used indicator of the environmental quality. This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30 m × 30 m. We use constrained sparse representation, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. We automatically determine the elementary spectra from image reference data using archetypal analysis by simplex volume maximization, and combine it with reversible jump Markov chain Monte Carlo method. In our experiments, the estimation of the automatically derived elementary spectra is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions, R2, and the number of used elementary spectra. The experiments show that a collection of archetypes can be an adequate and efficient alternative to the manually designed spectral library with respect to the mentioned criteria.
AB - The estimation of land cover fractions from remote sensing images is a frequently used indicator of the environmental quality. This paper focuses on the quantification of land cover fractions in an urban area of Berlin, Germany, using simulated hyperspectral EnMAP data with a spatial resolution of 30 m × 30 m. We use constrained sparse representation, where each pixel with unknown surface characteristics is expressed by a weighted linear combination of elementary spectra with known land cover class. We automatically determine the elementary spectra from image reference data using archetypal analysis by simplex volume maximization, and combine it with reversible jump Markov chain Monte Carlo method. In our experiments, the estimation of the automatically derived elementary spectra is compared to the estimation obtained by a manually designed spectral library by means of reconstruction error, mean absolute error of the fraction estimates, sum of fractions, R2, and the number of used elementary spectra. The experiments show that a collection of archetypes can be an adequate and efficient alternative to the manually designed spectral library with respect to the mentioned criteria.
UR - http://www.scopus.com/inward/record.url?scp=85047411307&partnerID=8YFLogxK
U2 - 10.14358/PERS.84.5.279
DO - 10.14358/PERS.84.5.279
M3 - Article
AN - SCOPUS:85047411307
SN - 0099-1112
VL - 84
SP - 279
EP - 286
JO - Photogrammetric Engineering and Remote Sensing
JF - Photogrammetric Engineering and Remote Sensing
IS - 5
ER -