API-Based Hardware Fault Simulation for DNN Accelerators

Patrik Omland, Yang Peng, Michael Paulitsch, Jorge Parra, Gustavo Espinosa, Abishai Daniel, Gereon Hinz, Alois Knoll

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Editor's notes: This article presents an application program interface (API)-based hardware fault simulation method to investigate the effect of hardware faults on the failure probability of deep neural network (DNN) accelerators.

Original languageEnglish
Pages (from-to)75-81
Number of pages7
JournalIEEE Design and Test
Volume40
Issue number2
DOIs
StatePublished - 1 Apr 2023

Keywords

  • deep neural networks
  • fault injection
  • fault model
  • fault tolerance
  • hardware faults
  • hardware reliability
  • program vulnerability

Fingerprint

Dive into the research topics of 'API-Based Hardware Fault Simulation for DNN Accelerators'. Together they form a unique fingerprint.

Cite this