Antireflection foils with multi-layer converter for ultracold neutron detectors

P. Maier-Komor, I. Altarev, A. Bergmaier, P. Böni, G. Dollinger, R. Krücken, S. Paul, W. Schott

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

For experiments at the ultracold neutron (UCN) source of the new high-luminosity neutron source, Forschungsreaktor München II (FRM II), highly efficient detectors are needed. The desired type of detectors utilizes 6Li as the neutron converter based on the huge cross-section reaction 6Li(n,α)t and detection of the 2.06MeV α-particles or the 2.73MeV t-particles. The high reflectance of UCN from 6Li with its positive optical potential must be compensated by a material with negative optical potential. Instead of the expensive 62Ni material, natural Ti can be chosen. It was demonstrated that neither 6Li metal nor Ti metal can be deposited in a high-vacuum evaporation apparatus without creating a positive optical potential and thus increasing the reflectivity for the UCN due to oxygen impurities coming from the H2O partial pressure in the high-vacuum system. To overcome these problems, a new UHV evaporation apparatus was developed and built which is capable of reaching a vacuum in the 10-10 Pa range. Such a good vacuum can be obtained only when annealing the vacuum system up to 470K. At such a high annealing temperature the silicon detectors for the α- and t particles might suffer degradation of their energy resolution. Therefore, the multi-layer system of 6Li and natTi is not deposited directly on the silicon detector but a thin rolled Ti foil is applied as backing. A test deposition of 200 double layers of 6LiF/ 62Ni on a thin Ti foil is described and a report is given about the setup of the new UHV evaporation apparatus.

Original languageEnglish
Pages (from-to)242-246
Number of pages5
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume521
Issue number1
DOIs
StatePublished - 21 Mar 2004
EventAccelerator Target Technology for the 21st Century. Proceeding - Argonne, IL., United States
Duration: 4 Nov 20028 Nov 2002

Keywords

  • Electron beam evaporation
  • LiF
  • Multi-layer target
  • Ni
  • Ni
  • Reactor experiment
  • Ti

Fingerprint

Dive into the research topics of 'Antireflection foils with multi-layer converter for ultracold neutron detectors'. Together they form a unique fingerprint.

Cite this