TY - JOUR
T1 - Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung
AU - Garny, Mathias
AU - Ibarra, Alejandro
AU - Vogl, Stefan
PY - 2011/7
Y1 - 2011/7
N2 - If the dark matter particle is a Majorana fermion, annihilations into two fermions and one gauge boson could have, for some choices of the parameters of the model, a non-negligible cross-section. Using a toy model of leptophilic dark matter, we calculate the constraints on the annihilation cross-section into two electrons and one weak gauge boson from the PAMELA measurements of the cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal astrophysical boost factor allowed in the Milky Way under the assumption that the leptophilic dark matter particle is the dominant component of dark matter in our Universe. These constraints constitute very conservative estimates on the boost factor for more realistic models where the dark matter particle also couples to quarks and weak gauge bosons, such as the lightest neutralino which we also analyze for some concrete benchmark points. The limits on the astrophysical boost factors presented here could be used to evaluate the prospects to detect a gamma-ray signal from dark matter annihilations at currently operating IACTs as well as in the projected CTA.
AB - If the dark matter particle is a Majorana fermion, annihilations into two fermions and one gauge boson could have, for some choices of the parameters of the model, a non-negligible cross-section. Using a toy model of leptophilic dark matter, we calculate the constraints on the annihilation cross-section into two electrons and one weak gauge boson from the PAMELA measurements of the cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal astrophysical boost factor allowed in the Milky Way under the assumption that the leptophilic dark matter particle is the dominant component of dark matter in our Universe. These constraints constitute very conservative estimates on the boost factor for more realistic models where the dark matter particle also couples to quarks and weak gauge bosons, such as the lightest neutralino which we also analyze for some concrete benchmark points. The limits on the astrophysical boost factors presented here could be used to evaluate the prospects to detect a gamma-ray signal from dark matter annihilations at currently operating IACTs as well as in the projected CTA.
KW - cosmic ray theory
KW - cosmology of theories beyond the SM
KW - dark matter theory
UR - http://www.scopus.com/inward/record.url?scp=79961235091&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2011/07/028
DO - 10.1088/1475-7516/2011/07/028
M3 - Article
AN - SCOPUS:79961235091
SN - 1475-7516
VL - 2011
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 7
M1 - 028
ER -