Abstract
Compared to "live" vaccines, the immunogenicity of "subunit" vaccines based on recombinant antigen (Ag) is poor, presumably because exogenous Ag fails to effectively access the endosomal Ag-processing pathways of Ag-presenting cells (APC). To overcome this limitation, we exploited biodegradable poly(lactic-co-glycolic) microspheres (MP) co-entrapping Ag and Toll-like receptor (TLR) 9 or 7 ligands as an endosomal delivery device. In vitro, microspheres were rapidly phagocytosed by APC and translocated into phago-endosomal compartments, followed by degradation of the Ag and concurrent activation of endosomal TLR. As a consequence, full maturation of and cytokine secretion by APC as well as Ag-cross-presentation ensued. In vivo, "loaded" microspheres triggered clonal expansion of primary and secondary Ag-specific CD4 and CD8 T cells. The efficacy of CD8 T cell cross-priming was comparable to that of live vectors. The potency of T cell vaccination was demonstrated by protective and therapeutic interventions using infection- and tumor-model systems. These preclinical "subunit" vaccination data thus recommend MP as a generally applicable and powerful endosomal delivery device of exogenous Ag plus TLR-based adjuvants to vaccinate for protective and therapeutic CD4 and CD8 T cell immunity.
Original language | English |
---|---|
Pages (from-to) | 2063-2074 |
Number of pages | 12 |
Journal | European Journal of Immunology |
Volume | 37 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2007 |
Keywords
- Dendritic cells
- T cells
- Vaccination