TY - JOUR
T1 - Anticipating critical transitions in multidimensional systems driven by time- and state-dependent noise
AU - Morr, Andreas
AU - Riechers, Keno
AU - Gorjão, Leonardo Rydin
AU - Boers, Niklas
N1 - Publisher Copyright:
© 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2024/7
Y1 - 2024/7
N2 - Anticipating bifurcation-induced transitions in dynamical systems has gained relevance in various fields of the natural, social, and economic sciences. Before the annihilation of a system's equilibrium point by means of a bifurcation, the system's internal feedbacks that stabilize the initial state weaken and eventually vanish, a process referred to as critical slowing down (CSD). In one-dimensional systems, this motivates the use of variance and lag-1 autocorrelation as indicators of CSD. However, the applicability of variance is limited to time- and state-independent driving noise, strongly constraining the generality of this CSD indicator. In multidimensional systems, the use of these indicators is often preceded by a dimension reduction in order to obtain a one-dimensional time series. Many common techniques for such an extraction of a one-dimensional time series generally incur the risk of missing CSD in practice. Here, we propose a data-driven approach based on estimating a multidimensional Langevin equation to detect local stability changes and anticipate bifurcation-induced transitions in systems with generally time- and state-dependent noise. Our approach substantially generalizes the conditions under which CSD can reliably be detected, as demonstrated in a suite of examples. In contrast to existing approaches, changes in deterministic dynamics can be clearly discriminated from changes in the driving noise using our method. This substantially reduces the risk of false or missed alarms of conventional CSD indicators in settings with time-dependent or multiplicative noise. In multidimensional systems, our method can greatly advance the understanding of the coupling between system components and can avoid risks of missing CSD due to dimension reduction, which existing approaches suffer from.
AB - Anticipating bifurcation-induced transitions in dynamical systems has gained relevance in various fields of the natural, social, and economic sciences. Before the annihilation of a system's equilibrium point by means of a bifurcation, the system's internal feedbacks that stabilize the initial state weaken and eventually vanish, a process referred to as critical slowing down (CSD). In one-dimensional systems, this motivates the use of variance and lag-1 autocorrelation as indicators of CSD. However, the applicability of variance is limited to time- and state-independent driving noise, strongly constraining the generality of this CSD indicator. In multidimensional systems, the use of these indicators is often preceded by a dimension reduction in order to obtain a one-dimensional time series. Many common techniques for such an extraction of a one-dimensional time series generally incur the risk of missing CSD in practice. Here, we propose a data-driven approach based on estimating a multidimensional Langevin equation to detect local stability changes and anticipate bifurcation-induced transitions in systems with generally time- and state-dependent noise. Our approach substantially generalizes the conditions under which CSD can reliably be detected, as demonstrated in a suite of examples. In contrast to existing approaches, changes in deterministic dynamics can be clearly discriminated from changes in the driving noise using our method. This substantially reduces the risk of false or missed alarms of conventional CSD indicators in settings with time-dependent or multiplicative noise. In multidimensional systems, our method can greatly advance the understanding of the coupling between system components and can avoid risks of missing CSD due to dimension reduction, which existing approaches suffer from.
UR - http://www.scopus.com/inward/record.url?scp=85203851440&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.6.033251
DO - 10.1103/PhysRevResearch.6.033251
M3 - Article
AN - SCOPUS:85203851440
SN - 2643-1564
VL - 6
JO - Physical Review Research
JF - Physical Review Research
IS - 3
M1 - 033251
ER -