Abstract
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
Original language | English |
---|---|
Article number | 220 |
Journal | Astrophysical Journal |
Volume | 826 |
Issue number | 2 |
DOIs | |
State | Published - 1 Aug 2016 |
Keywords
- astroparticle physics
- cosmic rays
Fingerprint
Dive into the research topics of 'ANISOTROPY in COSMIC-RAY ARRIVAL DIRECTIONS in the SOUTHERN HEMISPHERE BASED on SIX YEARS of DATA from the ICECUBE DETECTOR'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Astrophysical Journal, Vol. 826, No. 2, 220, 01.08.2016.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - ANISOTROPY in COSMIC-RAY ARRIVAL DIRECTIONS in the SOUTHERN HEMISPHERE BASED on SIX YEARS of DATA from the ICECUBE DETECTOR
AU - Aartsen, M. G.
AU - Abraham, K.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Altmann, D.
AU - Anderson, T.
AU - Ansseau, I.
AU - Anton, G.
AU - Archinger, M.
AU - Arguelles, C.
AU - Arlen, T. C.
AU - Auffenberg, J.
AU - Bai, X.
AU - Barwick, S. W.
AU - Baum, V.
AU - Bay, R.
AU - Beatty, J. J.
AU - Becker Tjus, J.
AU - Becker, K. H.
AU - Beiser, E.
AU - BenZvi, S.
AU - Berghaus, P.
AU - Berley, D.
AU - Bernardini, E.
AU - Bernhard, A.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Bissok, M.
AU - Blaufuss, E.
AU - Blumenthal, J.
AU - Boersma, D. J.
AU - Bohm, C.
AU - Börner, M.
AU - Bos, F.
AU - Bose, D.
AU - Böser, S.
AU - Botner, O.
AU - Braun, J.
AU - Brayeur, L.
AU - Bretz, H. P.
AU - Buzinsky, N.
AU - Casey, J.
AU - Casier, M.
AU - Cheung, E.
AU - Chirkin, D.
AU - Christov, A.
AU - Clark, K.
AU - Classen, L.
AU - Coenders, S.
AU - Collin, G. H.
AU - Conrad, J. M.
AU - Cowen, D. F.
AU - Cruz Silva, A. H.
AU - Daughhetee, J.
AU - Davis, J. C.
AU - Day, M.
AU - De André, J. P.A.M.
AU - De Clercq, C.
AU - Del Pino Rosendo, E.
AU - Dembinski, H.
AU - De Ridder, S.
AU - Desiati, P.
AU - De Vries, K. D.
AU - De Wasseige, G.
AU - De With, M.
AU - Deyoung, T.
AU - Díaz-Vélez, J. C.
AU - Lorenzo, V. Di
AU - Dujmovic, H.
AU - Dumm, J. P.
AU - Dunkman, M.
AU - Eberhardt, B.
AU - Ehrhardt, T.
AU - Eichmann, B.
AU - Euler, S.
AU - Evenson, P. A.
AU - Fahey, S.
AU - Fazely, A. R.
AU - Feintzeig, J.
AU - Felde, J.
AU - Filimonov, K.
AU - Finley, C.
AU - Flis, S.
AU - Fösig, C. C.
AU - Fuchs, T.
AU - Gaisser, T. K.
AU - Gaior, R.
AU - Gallagher, J.
AU - Gerhardt, L.
AU - Ghorbani, K.
AU - Gier, D.
AU - Gladstone, L.
AU - Glagla, M.
AU - Glüsenkamp, T.
AU - Goldschmidt, A.
AU - Golup, G.
AU - Gonzalez, J. G.
AU - Góra, D.
AU - Grant, D.
AU - Griffith, Z.
AU - Ha, C.
AU - Haack, C.
AU - Haj Ismail, A.
AU - Hallgren, A.
AU - Halzen, F.
AU - Hansen, E.
AU - Hansmann, B.
AU - Hansmann, T.
AU - Hanson, K.
AU - Hebecker, D.
AU - Heereman, D.
AU - Helbing, K.
AU - Hellauer, R.
AU - Hickford, S.
AU - Hignight, J.
AU - Hill, G. C.
AU - Hoffman, K. D.
AU - Hoffmann, R.
AU - Holzapfel, K.
AU - Homeier, A.
AU - Hoshina, K.
AU - Huang, F.
AU - Huber, M.
AU - Huelsnitz, W.
AU - Hulth, P. O.
AU - Hultqvist, K.
AU - In, S.
AU - Ishihara, A.
AU - Jacobi, E.
AU - Japaridze, G. S.
AU - Jeong, M.
AU - Jero, K.
AU - Jones, B. J.P.
AU - Jurkovic, M.
AU - Kappes, A.
AU - Karg, T.
AU - Karle, A.
AU - Katz, U.
AU - Kauer, M.
AU - Keivani, A.
AU - Kelley, J. L.
AU - Kemp, J.
AU - Kheirandish, A.
AU - Kim, M.
AU - Kintscher, T.
AU - Kiryluk, J.
AU - Klein, S. R.
AU - Kohnen, G.
AU - Koirala, R.
AU - Kolanoski, H.
AU - Konietz, R.
AU - Köpke, L.
AU - Kopper, C.
AU - Kopper, S.
AU - Koskinen, D. J.
AU - Kowalski, M.
AU - Krings, K.
AU - Kroll, G.
AU - Kroll, M.
AU - Krückl, G.
AU - Kunnen, J.
AU - Kunwar, S.
AU - Kurahashi, N.
AU - Kuwabara, T.
AU - Labare, M.
AU - Lanfranchi, J. L.
AU - Larson, M. J.
AU - Lennarz, D.
AU - Lesiak-Bzdak, M.
AU - Leuermann, M.
AU - Leuner, J.
AU - Lu, L.
AU - Lünemann, J.
AU - Madsen, J.
AU - Maggi, G.
AU - Mahn, K. B.M.
AU - Mandelartz, M.
AU - Maruyama, R.
AU - Mase, K.
AU - Matis, H. S.
AU - Maunu, R.
AU - McNally, F.
AU - Meagher, K.
AU - Medici, M.
AU - Meier, M.
AU - Meli, A.
AU - Menne, T.
AU - Merino, G.
AU - Meures, T.
AU - Miarecki, S.
AU - Middell, E.
AU - Mohrmann, L.
AU - Montaruli, T.
AU - Morse, R.
AU - Nahnhauer, R.
AU - Naumann, U.
AU - Neer, G.
AU - Niederhausen, H.
AU - Nowicki, S. C.
AU - Nygren, D. R.
AU - Obertacke Pollmann, A.
AU - Olivas, A.
AU - Omairat, A.
AU - O'Murchadha, A.
AU - Palczewski, T.
AU - Pandya, H.
AU - Pankova, D. V.
AU - Paul, L.
AU - Pepper, J. A.
AU - Pérez De Los Heros, C.
AU - Pfendner, C.
AU - Pieloth, D.
AU - Pinat, E.
AU - Posselt, J.
AU - Price, P. B.
AU - Przybylski, G. T.
AU - Quinnan, M.
AU - Raab, C.
AU - Rädel, L.
AU - Rameez, M.
AU - Rawlins, K.
AU - Reimann, R.
AU - Relich, M.
AU - Resconi, E.
AU - Rhode, W.
AU - Richman, M.
AU - Richter, S.
AU - Riedel, B.
AU - Robertson, S.
AU - Rongen, M.
AU - Rott, C.
AU - Ruhe, T.
AU - Ryckbosch, D.
AU - Sabbatini, L.
AU - Sander, H. G.
AU - Sandrock, A.
AU - Sandroos, J.
AU - Sarkar, S.
AU - Schatto, K.
AU - Schimp, M.
AU - Schlunder, P.
AU - Schmidt, T.
AU - Schoenen, S.
AU - Schöneberg, S.
AU - Schönwald, A.
AU - Schumacher, L.
AU - Seckel, D.
AU - Seunarine, S.
AU - Soldin, D.
AU - Song, M.
AU - Spiczak, G. M.
AU - Spiering, C.
AU - Stahlberg, M.
AU - Stamatikos, M.
AU - Stanev, T.
AU - Stasik, A.
AU - Steuer, A.
AU - Stezelberger, T.
AU - Stokstad, R. G.
AU - Stössl, A.
AU - Ström, R.
AU - Strotjohann, N. L.
AU - Sullivan, G. W.
AU - Sutherland, M.
AU - Taavola, H.
AU - Taboada, I.
AU - Tatar, J.
AU - Ter-Antonyan, S.
AU - Terliuk, A.
AU - Tešić, G.
AU - Tilav, S.
AU - Toale, P. A.
AU - Tobin, M. N.
AU - Toscano, S.
AU - Tosi, D.
AU - Tselengidou, M.
AU - Turcati, A.
AU - Unger, E.
AU - Usner, M.
AU - Vallecorsa, S.
AU - Vandenbroucke, J.
AU - Van Eijndhoven, N.
AU - Vanheule, S.
AU - Van Santen, J.
AU - Veenkamp, J.
AU - Vehring, M.
AU - Voge, M.
AU - Vraeghe, M.
AU - Walck, C.
AU - Wallace, A.
AU - Wallraff, M.
AU - Wandkowsky, N.
AU - Weaver, Ch
AU - Wendt, C.
AU - Westerhoff, S.
AU - Whelan, B. J.
AU - Wiebe, K.
AU - Wiebusch, C. H.
AU - Wille, L.
AU - Williams, D. R.
AU - Wills, L.
AU - Wissing, H.
AU - Wolf, M.
AU - Wood, T. R.
AU - Woschnagg, K.
AU - Xu, D. L.
AU - Xu, X. W.
AU - Xu, Y.
AU - Yanez, J. P.
AU - Yodh, G.
AU - Yoshida, S.
AU - Zoll, M.
N1 - Publisher Copyright: © 2016. The American Astronomical Society. All rights reserved.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
AB - The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
KW - astroparticle physics
KW - cosmic rays
UR - http://www.scopus.com/inward/record.url?scp=84982224440&partnerID=8YFLogxK
U2 - 10.3847/0004-637X/826/2/220
DO - 10.3847/0004-637X/826/2/220
M3 - Article
AN - SCOPUS:84982224440
SN - 0004-637X
VL - 826
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 220
ER -