Analytics on fast data: Main-Memory database systems versus modern streaming systems [Experiments and analyses]

Andreas Kipf, Lucas Braun, Varun Pandey, Thomas Neumann, Jan Böttcher, Alfons Kemper

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Today’s streaming applications demand increasingly high event throughput rates and are often subject to strict latency constraints. To allow for more complex workloads, such as window-based aggregations, streaming systems need to support stateful event processing. This introduces new challenges for streaming engines as the state needs to be maintained in a consistent and durable manner and simultaneously accessed by complex queries for real-time analytics. Modern streaming systems, such as Apache Flink, do not allow for efficiently exposing the state to analytical queries. Thus, data engineers are forced to keep the state in external data stores, which significantly increases the latencies until events are visible to analytical queries. Proprietary solutions have been created to meet data freshness constraints. These solutions are expensive, error-prone, and difficult to maintain. Main-memory database systems, such as HyPer, achieve extremely low query response times while maintaining high update rates, which makes them well-suited for analytical streaming workloads. In this paper, we identify potential extensions to database systems to match the performance and usability of streaming systems.

Original languageEnglish
Title of host publicationAdvances in Database Technology - EDBT 2017
Subtitle of host publication20th International Conference on Extending Database Technology, Proceedings
EditorsBernhard Mitschang, Volker Markl, Sebastian Bress, Periklis Andritsos, Kai-Uwe Sattler, Salvatore Orlando
PublisherOpenProceedings.org
Pages49-60
Number of pages12
ISBN (Electronic)9783893180738
DOIs
StatePublished - 2017
Event20th International Conference on Extending Database Technology, EDBT 2017 - Venice, Italy
Duration: 21 Mar 201724 Mar 2017

Publication series

NameAdvances in Database Technology - EDBT
Volume2017-March
ISSN (Electronic)2367-2005

Conference

Conference20th International Conference on Extending Database Technology, EDBT 2017
Country/TerritoryItaly
CityVenice
Period21/03/1724/03/17

Keywords

  • Main-memory database systems
  • Stream processing

Fingerprint

Dive into the research topics of 'Analytics on fast data: Main-Memory database systems versus modern streaming systems [Experiments and analyses]'. Together they form a unique fingerprint.

Cite this