TY - JOUR
T1 - Analytical performance characteristics and clinical utility of a novel assay for total hepatitis C virus core antigen quantification
AU - Ross, R. S.
AU - Viazov, S.
AU - Salloum, S.
AU - Hilgard, P.
AU - Gerken, G.
AU - Roggendorf, M.
PY - 2010/4/1
Y1 - 2010/4/1
N2 - The detection and quantification of hepatitis C virus (HCV) core antigen in serum or plasma by the use of different assay formats have previously been shown to represent useful markers of viral replication. In the present study, the intrinsic performance characteristics and the potential clinical utility of a novel assay for the quantification of total HCV core antigen were comprehensively assessed by using clinical serum samples and specimens contained in various evaluation panels. The Architect HCV Ag assay showed a specificity of 100%. The intra- and interassay coefficients of variation ranged from 3.6 to 8.0% and from 4.7 to 9.5%, respectively. Except for HCV genotype 2 isolates, the analytical sensitivity was always less than 10 fmol core antigen/liter, corresponding to approximately 500 to 3,000 IU of HCV RNA/ml. Linearity was guaranteed throughout the dynamic range (10 to 20,000 fmol/liter). When seroconversion panels were tested, the assay was not inferior to HCV RNA detection and reduced the preseroconversion period by 4 to 16 days. The results obtained by core antigen and HCV RNA quantification for 385 clinical specimens were correlated by regression analysis (r = 0.857), but the calculated conversion equation differed significantly from the line of identity. Monitoring of viral kinetics by use of either core antigen or RNA concentrations in 38 HCV-infected patients undergoing antiviral combination therapy resulted in very similarly shaped curves in all cases. Finally, the Architect HCV Ag assay was also shown to enable high-throughput screening of in vitro HCV RNA replication. With these results taken together, the Architect HCV Ag assay proved to be a specific, reproducible, highly sensitive, and clinically applicable test format which will find its future place in the context of virological HCV diagnostics.
AB - The detection and quantification of hepatitis C virus (HCV) core antigen in serum or plasma by the use of different assay formats have previously been shown to represent useful markers of viral replication. In the present study, the intrinsic performance characteristics and the potential clinical utility of a novel assay for the quantification of total HCV core antigen were comprehensively assessed by using clinical serum samples and specimens contained in various evaluation panels. The Architect HCV Ag assay showed a specificity of 100%. The intra- and interassay coefficients of variation ranged from 3.6 to 8.0% and from 4.7 to 9.5%, respectively. Except for HCV genotype 2 isolates, the analytical sensitivity was always less than 10 fmol core antigen/liter, corresponding to approximately 500 to 3,000 IU of HCV RNA/ml. Linearity was guaranteed throughout the dynamic range (10 to 20,000 fmol/liter). When seroconversion panels were tested, the assay was not inferior to HCV RNA detection and reduced the preseroconversion period by 4 to 16 days. The results obtained by core antigen and HCV RNA quantification for 385 clinical specimens were correlated by regression analysis (r = 0.857), but the calculated conversion equation differed significantly from the line of identity. Monitoring of viral kinetics by use of either core antigen or RNA concentrations in 38 HCV-infected patients undergoing antiviral combination therapy resulted in very similarly shaped curves in all cases. Finally, the Architect HCV Ag assay was also shown to enable high-throughput screening of in vitro HCV RNA replication. With these results taken together, the Architect HCV Ag assay proved to be a specific, reproducible, highly sensitive, and clinically applicable test format which will find its future place in the context of virological HCV diagnostics.
UR - http://www.scopus.com/inward/record.url?scp=77950506807&partnerID=8YFLogxK
U2 - 10.1128/JCM.01640-09
DO - 10.1128/JCM.01640-09
M3 - Article
C2 - 20107102
AN - SCOPUS:77950506807
SN - 0095-1137
VL - 48
SP - 1161
EP - 1168
JO - Journal of Clinical Microbiology
JF - Journal of Clinical Microbiology
IS - 4
ER -