Abstract
The molecular chaperones GroEL and GroES facilitate protein folding in an ATP-dependent manner under conditions where no spontaneous folding occurs. It has remained unknown whether GroE achieves this by a passive sequestration of protein inside the GroE cavity or by changing the folding pathway of a protein. Here we used citrate synthase, a well studied model substrate, to discriminate between these possibilities. We demonstrate that GroE maintains unfolding intermediates in a state that allows productive folding under nonpermissive conditions. During encapsulation of non-native protein inside GroEL·GroES complexes, a folding reaction takes place, generating association-competent monomeric intermediates that are no longer recognized by GroEL. Thus, GroE shifts folding intermediates to a productive folding pathway under heat shock conditions where even the native protein unfolds in the absence of GroE.
Original language | English |
---|---|
Pages (from-to) | 20171-20177 |
Number of pages | 7 |
Journal | Journal of Biological Chemistry |
Volume | 274 |
Issue number | 29 |
DOIs | |
State | Published - 16 Jul 1999 |