An integrated design approach for a series elastic actuator: Stiffness formulation, fatigue analysis, thermal management

Mehmet C. Yildirim, Polat Sendur, Onur Bilgin, Berk Gulek, G. Guven Yapici, Barkan Ugurlu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

This paper presents an integrated mechanical design approach for the long-Term and repetitive use of series elastic actuators (SEAs). Already, computational models for series elastic actuator design have been developed in order to address the challenging weight and volume targets. However, an integrated design method in which the coupling effects between various interacting requirements that are explored at every stage of the design cycle does not exist. In particular, the interactions between the torsional stiffness, strength, fatigue life and thermal performance are not analyzed in-depth. To this end, we propose a comprehensive design approach in which the aforementioned requirements (FEA, stiffness formulation, fatigue analysis, and thermal management) are integrated in a complementary manner. Computer-Aided analyses and experimental results verified the effectiveness of our design approach. The proposed approach is employed to manufacture our SEA module CoEx-SEA.

Original languageEnglish
Title of host publication2017 IEEE-RAS 17th International Conference on Humanoid Robotics, Humanoids 2017
PublisherIEEE Computer Society
Pages384-389
Number of pages6
ISBN (Electronic)9781538646786
DOIs
StatePublished - 22 Dec 2017
Externally publishedYes
Event17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017 - Birmingham, United Kingdom
Duration: 15 Nov 201717 Nov 2017

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Conference

Conference17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017
Country/TerritoryUnited Kingdom
CityBirmingham
Period15/11/1717/11/17

Fingerprint

Dive into the research topics of 'An integrated design approach for a series elastic actuator: Stiffness formulation, fatigue analysis, thermal management'. Together they form a unique fingerprint.

Cite this