An efficient extension to elevation maps for outdoor terrain mapping and loop closing

Patrick Pfaff, Rudolph Triebel, Wolfram Burgard

Research output: Contribution to journalArticlepeer-review

136 Scopus citations

Abstract

Elevation maps are a popular data structure for representing the environment of a mobile robot operating outdoors or on not-flat surfaces. Elevation maps store in each cell of a discrete grid the height of the surface at the corresponding place in the environment. However, the use of this 2-dimensional representation, is disadvantageous when utilized for mapping with mobile robots operating on the ground, since vertical or overhanging objects cannot be represented appropriately. Furthermore, such objects can lead to registration errors when two elevation maps have to be matched. In this paper, an approach is proposed that allows a mobile robot to deal with vertical and overhanging objects in elevation maps. The approach classifies the points in the environment according to whether they correspond to such objects or not. Also presented is a variant of the ICP algorithm that utilizes the classification of cells during the data association. Additionally, it is shown how the constraints computed by the ICP algorithm can be applied to determine globally consistent alignments. Experiments carried out with a real robot in an outdoor environment demonstrate that the proposed approach yields highly accurate elevation maps even in the case of loops. Experimental results are presented demonstrating that that the proposed classification increases the robustness of the scan matching process.

Original languageEnglish
Pages (from-to)217-230
Number of pages14
JournalInternational Journal of Robotics Research
Volume26
Issue number2
DOIs
StatePublished - Feb 2007
Externally publishedYes

Keywords

  • Elevation maps
  • Outdoor robots
  • SLAM
  • Surface maps

Fingerprint

Dive into the research topics of 'An efficient extension to elevation maps for outdoor terrain mapping and loop closing'. Together they form a unique fingerprint.

Cite this