TY - JOUR
T1 - An analysis protocol for three-electrode Li-ion battery impedance spectra
T2 - Part I. Analysis of a high-voltage positive electrode
AU - Landesfeind, Johannes
AU - Pritzl, Daniel
AU - Gasteiger, Hubert A.
N1 - Publisher Copyright:
© The Author(s) 2017. Published by ECS. All rights reserved.
PY - 2017
Y1 - 2017
N2 - A key for the interpretation of porous lithium ion battery electrode impedance spectra is a meaningful and physically motivated equivalent-circuit model. In this work we present a novel approach, utilizing a general transmission line equivalent-circuit model to exemplarily analyze the impedance of a porous high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode. It is based on a LNMO/graphite full-cell setup equipped with a gold wire micro-reference electrode (GWRE) to obtain impedance spectra in both, non-blocking conditions at a potential of 4.4 V cell voltage and in blocking configuration achieved at 4.9 V cell voltage. A simultaneous fitting of both spectra enables the deconvolution of physical effects to quantify over the course of 85 cycles at 40°C: a) the true charge transfer resistance (RCT), b) the pore resistance (RPore), and c) the contact resistance (RCont.). We demonstrate that the charge transfer resistance would be overestimated significantly, if the spectra are fitted with a conventionally used simplified R/Q equivalent-circuit compared to our full transmission line analysis.
AB - A key for the interpretation of porous lithium ion battery electrode impedance spectra is a meaningful and physically motivated equivalent-circuit model. In this work we present a novel approach, utilizing a general transmission line equivalent-circuit model to exemplarily analyze the impedance of a porous high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode. It is based on a LNMO/graphite full-cell setup equipped with a gold wire micro-reference electrode (GWRE) to obtain impedance spectra in both, non-blocking conditions at a potential of 4.4 V cell voltage and in blocking configuration achieved at 4.9 V cell voltage. A simultaneous fitting of both spectra enables the deconvolution of physical effects to quantify over the course of 85 cycles at 40°C: a) the true charge transfer resistance (RCT), b) the pore resistance (RPore), and c) the contact resistance (RCont.). We demonstrate that the charge transfer resistance would be overestimated significantly, if the spectra are fitted with a conventionally used simplified R/Q equivalent-circuit compared to our full transmission line analysis.
UR - http://www.scopus.com/inward/record.url?scp=85020503014&partnerID=8YFLogxK
U2 - 10.1149/2.0131709jes
DO - 10.1149/2.0131709jes
M3 - Article
AN - SCOPUS:85020503014
SN - 0013-4651
VL - 164
SP - A1773-A1783
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 7
ER -