An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization

Reshad Hosseini, Suvrit Sra

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

We consider maximum likelihood estimation for Gaussian Mixture Models (Gmm s). This task is almost invariably solved (in theory and practice) via the Expectation Maximization (EM) algorithm. EM owes its success to various factors, of which is its ability to fulfill positive definiteness constraints in closed form is of key importance. We propose an alternative to EM grounded in the Riemannian geometry of positive definite matrices, using which we cast Gmm parameter estimation as a Riemannian optimization problem. Surprisingly, such an out-of-the-box Riemannian formulation completely fails and proves much inferior to EM. This motivates us to take a closer look at the problem geometry, and derive a better formulation that is much more amenable to Riemannian optimization. We then develop Riemannian batch and stochastic gradient algorithms that outperform EM, often substantially. We provide a non-asymptotic convergence analysis for our stochastic method, which is also the first (to our knowledge) such global analysis for Riemannian stochastic gradient. Numerous empirical results are included to demonstrate the effectiveness of our methods.

Original languageEnglish
Pages (from-to)187-223
Number of pages37
JournalMathematical Programming
Volume181
Issue number1
DOIs
StatePublished - 1 May 2020
Externally publishedYes

Keywords

  • Gaussian mixture models
  • Non-asymptotic rate of convergence
  • Positive definite matrices
  • Retraction
  • Riemannian optimization
  • Stochastic optimization

Fingerprint

Dive into the research topics of 'An alternative to EM for Gaussian mixture models: batch and stochastic Riemannian optimization'. Together they form a unique fingerprint.

Cite this