Amplitude-dependent damping and driving rates of high-frequency thermoacoustic oscillations in a lab-scale lean-premixed gas turbine combustor

Thomas Hofmeister, Thomas Sattelmayer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This paper presents the numerical investigations of amplitudedependent stability behavior of thermoacoustic oscillations at screech level frequencies in a lean-premixed, atmospheric, swirlstabilized, lab-scale gas turbine combustor. A hybrid Computational Fluid Dynamics / Computational AeroAcoustics (CFD / CAA) approach is applied to individually compute thermoacoustic damping and driving rates for various acoustic amplitude levels at the combustors' first transversal (T1) eigenfrequency. Harmonically forced CFD simulations with the Unsteady Reynolds- Averaged Navier-Stokes (URANS) equations mimic the real combustor's rotating T1 eigenmode. A slow and monotonous increase of the forcing amplitude over time allows observation of the amplitude-dependent flow field and flame evolution. In accordance with measured OH*-chemiluminescence images, a pulsation amplitude-dependent flame contraction is reproduced in the CFD simulations, where acoustically induced backflow at the combustion chamber inlet is identified as the root-cause of this phenomenon. At several amplitude levels, period-averaged flow fields are then denoted as reference states, which serve as inputs for the CAA part. There, eigenfrequency simulations with linearized flow equations are performed with the Finite Element Method (FEM). The outcomes are damping and driving rates as a response to the amplitude dependency of the mean flow field, which combined give the net thermoacoustic growth rate. It is found that driving due to flame-acoustics interactions only governs a weak amplitude dependency, which agrees with prior, experimentally based studies at the authors' institute. This disqualifies the perception of heat release saturation as the root-cause for limit-cycle oscillations - at least in this high-frequency thermoacoustic system. Instead, significantly increased dissipation due to the interaction of acoustically induced vorticity perturbations with the mean flow is identified, which may explain the formation of a limit-cycle.

Original languageEnglish
Title of host publicationCombustion, Fuels, and Emissions
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884942
DOIs
StatePublished - 2021
EventASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021 - Virtual, Online
Duration: 7 Jun 202111 Jun 2021

Publication series

NameProceedings of the ASME Turbo Expo
Volume3A-2021

Conference

ConferenceASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021
CityVirtual, Online
Period7/06/2111/06/21

Fingerprint

Dive into the research topics of 'Amplitude-dependent damping and driving rates of high-frequency thermoacoustic oscillations in a lab-scale lean-premixed gas turbine combustor'. Together they form a unique fingerprint.

Cite this