Abstract
Femtosecond two-dimensional (2D) spectroscopy has become a widely employed method for the investigation of the dynamics of complex chemical and biological systems. In 2D spectroscopy, the sample is excited with three phase-locked femtosecond pulses, and the signal is heterodyned with the local oscillator field. The 2D spectrum is obtained by double Fourier transform with respect to the time delay between the first two pulses and the time delay between the third pulse and the local oscillator field. We show that 2D optical signals can alternatively be measured and computationally simulated as four-wave-mixing signals generated by two femtosecond pulses and two one-sided continuous-wave (CW) pulses. The first femtosecond pulse and one-sided CW pulse create the doorway state, while the second femtosecond pulse and one-sided CW pulse create the window state. This picture relates 2D spectroscopy to other mixed time-frequency-domain techniques, which is useful for the interpretation of the corresponding signals. Moreover, it allows a computationally efficient evaluation of 2D spectra.
Original language | English |
---|---|
Article number | 194104 |
Journal | Journal of Chemical Physics |
Volume | 144 |
Issue number | 19 |
DOIs | |
State | Published - 21 May 2016 |