Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation

Filip Van Petegem, Karl E. Duderstadt, Kimberly A. Clark, Michelle Wang, Daniel L. Minor

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Voltage-gated calcium channels (CaVs) are large, multisubunit complexes that control cellular calcium entry. CaV pore-forming (CaVα1) and cytoplasmic (CaVβ) subunits associate through a high-affinity interaction between the CaVα1 α interaction domain (AID) and CaVβ α binding pocket (ABP). Here we analyze AID-ABP interaction thermodynamics using isothermal titration calorimetry. We find that commensurate with their strong sequence similarity, all CaV1 and CaV2 AID peptides bind CaVβ with similar nanomolar affinities. Although the AID-ABP interface encompasses 24 side chains, alanine-scanning mutagenesis reveals that the binding energy is focused in two complementary hotspots comprising four deeply conserved residues. Electrophysiological experiments show that hotspot interaction disruption prevents trafficking and functional modulation of CaV1.2 by CaVβ. Together, the data support the primacy of the AID-ABP interface for CaVα1-CaVβ association, underscore the idea that hotspots dominate protein-protein interaction affinities, and uncover a target for strategies to control cellular excitability by blocking CaVα1-CaVβ complex formation.

Original languageEnglish
Pages (from-to)280-294
Number of pages15
JournalStructure
Volume16
Issue number2
DOIs
StatePublished - 12 Feb 2008
Externally publishedYes

Keywords

  • PROTEINS
  • SIGNALING

Fingerprint

Dive into the research topics of 'Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation'. Together they form a unique fingerprint.

Cite this