Airway Segmentation Based on Topological Structure Enhancement Using Multi-task Learning

Hasnae Zerouaoui, Gbenga Peter Oderinde, Rida Lefdali, Karima Echihabi, Stephen Peter Akpulu, Nosereme Abel Agbon, Abraham Sunday Musa, Yousef Yeganeh, Azade Farshad, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Nuclei semantic segmentation is a key component for advancing machine learning and deep learning applications in digital pathology. However, most existing segmentation models are trained and tested on high-quality data acquired with expensive equipment, such as whole slide scanners, which are not accessible to most pathologists in developing countries. These pathologists rely on low-resource data acquired with low-precision microscopes, smartphones, or digital cameras, which have different characteristics and challenges than high-resource data. Therefore, there is a gap between the state-of-the-art segmentation models and the real-world needs of low-resource settings. This work aims to bridge this gap by presenting the first fully annotated African multi-organ dataset for histopathology nuclei semantic segmentation acquired with a low-precision microscope. We also evaluate state-of-the-art segmentation models, including spectral feature extraction encoder and vision transformer-based models, and stain normalization techniques for color normalization of Hematoxylin and Eosin-stained histopathology slides. Our results provide important insights for future research on nuclei histopathology segmentation with low-resource data.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2024, 27th International Conference Proceedings
EditorsMarius George Linguraru, Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, Julia A. Schnabel
PublisherSpringer Science and Business Media Deutschland GmbH
Pages96-106
Number of pages11
ISBN (Print)9783031721137
DOIs
StatePublished - 2024
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15009 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Digital Pathology
  • Low-resources data
  • Nuclei Segmentation
  • Semantic Segmentation
  • Spectral Features
  • Visual Transformers

Fingerprint

Dive into the research topics of 'Airway Segmentation Based on Topological Structure Enhancement Using Multi-task Learning'. Together they form a unique fingerprint.

Cite this