Aerodynamic origin of rotor-rotor interaction noise from unducted propulsors

Florian Danner, Christofer Kendall-Torry, Hans Peter Kau

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

The sound arising from blade row interaction in open rotor propulsion systems is known to significantly contribute to overall noise emissions. The present paper therefore addresses the origination of rotor-rotor interaction noise from a pair of unducted counter-rotating fans. The focus is on the aerodynamic mechanisms that involve sound generation, in order to provide the physical understanding required to find noise-reducing means. Detailed insight into the underlying phenomena is provided on the basis of numerical simulations applying the unsteady Reynoldsaveraged Navier-Stokes equations. The interaction mechanisms are identified by extracting the time-dependent disturbances of the flow field in the respective rotor relative frame of reference. Conclusions on the sources of interaction noise and potential noise-reducing means are drawn by evaluating polar directivities, blade surface pressure distributions and propagation characteristics.

Original languageEnglish
Title of host publicationASME Turbo Expo 2013
Subtitle of host publicationTurbine Technical Conference and Exposition, GT 2013
DOIs
StatePublished - 2013
EventASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013 - San Antonio, Tx, United States
Duration: 3 Jun 20137 Jun 2013

Publication series

NameProceedings of the ASME Turbo Expo
Volume6 C

Conference

ConferenceASME Turbo Expo 2013: Turbine Technical Conference and Exposition, GT 2013
Country/TerritoryUnited States
CitySan Antonio, Tx
Period3/06/137/06/13

Fingerprint

Dive into the research topics of 'Aerodynamic origin of rotor-rotor interaction noise from unducted propulsors'. Together they form a unique fingerprint.

Cite this