Adversarial attacks on neural networks for graph data

Daniel Zügner, Amir Akbarnejad, Stephan Günnemann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

809 Scopus citations

Abstract

Deep learning models for graphs have achieved strong performance for the task of node classification. Despite their proliferation, currently there is no study of their robustness to adversarial attacks. Yet, in domains where they are likely to be used, e.g. the web, adversaries are common. Can deep learning models for graphs be easily fooled? In this work, we introduce the first study of adversarial attacks on attributed graphs, specifically focusing on models exploiting ideas of graph convolutions. In addition to attacks at test time, we tackle the more challenging class of poisoning/causative attacks, which focus on the training phase of a machine learning model. We generate adversarial perturbations targeting the node's features and the graph structure, thus, taking the dependencies between instances in account. Moreover, we ensure that the perturbations remain unnoticeable by preserving important data characteristics. To cope with the underlying discrete domain we propose an efficient algorithm Nettack exploiting incremental computations. Our experimental study shows that accuracy of node classification significantly drops even when performing only few perturbations. Even more, our attacks are transferable: the learned attacks generalize to other state-of-the-art node classification models and unsupervised approaches, and likewise are successful even when only limited knowledge about the graph is given.

Original languageEnglish
Title of host publicationKDD 2018 - Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages2847-2856
Number of pages10
ISBN (Print)9781450355520
DOIs
StatePublished - 19 Jul 2018
Event24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2018 - London, United Kingdom
Duration: 19 Aug 201823 Aug 2018

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2018
Country/TerritoryUnited Kingdom
CityLondon
Period19/08/1823/08/18

Keywords

  • Adversarial machine learning
  • Graph convolutional networks
  • Graph mining
  • Network mining
  • Semi-supervised learning

Fingerprint

Dive into the research topics of 'Adversarial attacks on neural networks for graph data'. Together they form a unique fingerprint.

Cite this