Adversarial attacks on graph neural networks via meta learning

Daniel Zügner, Stephan Günnemann

Research output: Contribution to conferencePaperpeer-review

440 Scopus citations

Abstract

Deep learning models for graphs have advanced the state of the art on many tasks. Despite their recent success, little is known about their robustness. We investigate training time attacks on graph neural networks for node classification that perturb the discrete graph structure. Our core principle is to use meta-gradients to solve the bilevel problem underlying training-time attacks, essentially treating the graph as a hyperparameter to optimize. Our experiments show that small graph perturbations consistently lead to a strong decrease in performance for graph convolutional networks, and even transfer to unsupervised embeddings. Remarkably, the perturbations created by our algorithm can misguide the graph neural networks such that they perform worse than a simple baseline that ignores all relational information. Our attacks do not assume any knowledge about or access to the target classifiers.

Original languageEnglish
StatePublished - 2019
Event7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States
Duration: 6 May 20199 May 2019

Conference

Conference7th International Conference on Learning Representations, ICLR 2019
Country/TerritoryUnited States
CityNew Orleans
Period6/05/199/05/19

Fingerprint

Dive into the research topics of 'Adversarial attacks on graph neural networks via meta learning'. Together they form a unique fingerprint.

Cite this