Adversarial and perceptual refinement for compressed sensing MRI reconstruction

Maximilian Seitzer, Guang Yang, Jo Schlemper, Ozan Oktay, Tobias Würfl, Vincent Christlein, Tom Wong, Raad Mohiaddin, David Firmin, Jennifer Keegan, Daniel Rueckert, Andreas Maier

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

91 Scopus citations

Abstract

Deep learning approaches have shown promising performance for compressed sensing-based Magnetic Resonance Imaging. While deep neural networks trained with mean squared error (MSE) loss functions can achieve high peak signal to noise ratio, the reconstructed images are often blurry and lack sharp details, especially for higher undersampling rates. Recently, adversarial and perceptual loss functions have been shown to achieve more visually appealing results. However, it remains an open question how to (1) optimally combine these loss functions with the MSE loss function and (2) evaluate such a perceptual enhancement. In this work, we propose a hybrid method, in which a visual refinement component is learnt on top of an MSE loss-based reconstruction network. In addition, we introduce a semantic interpretability score, measuring the visibility of the region of interest in both ground truth and reconstructed images, which allows us to objectively quantify the usefulness of the image quality for image post-processing and analysis. Applied on a large cardiac MRI dataset simulated with 8-fold undersampling, we demonstrate significant improvements (p<0.01) over the state-of-the-art in both a human observer study and the semantic interpretability score.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsJulia A. Schnabel, Christos Davatzikos, Carlos Alberola-López, Gabor Fichtinger, Alejandro F. Frangi
PublisherSpringer Verlag
Pages232-240
Number of pages9
ISBN (Print)9783030009274
DOIs
StatePublished - 2018
Externally publishedYes
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sep 201820 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11070 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/1820/09/18

Fingerprint

Dive into the research topics of 'Adversarial and perceptual refinement for compressed sensing MRI reconstruction'. Together they form a unique fingerprint.

Cite this