Advancing Federated Learning in 6G: A Trusted Architecture with Graph-Based Analysis

Wenxuan Ye, Chendi Qian, Xueli An, Xueqiang Yan, Georg Carle

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Integrating native AI support into the network architecture is an essential objective of 6G. Federated Learning (FL) emerges as a potential paradigm, facilitating decentralized AI model training across a diverse range of devices under the co-ordination of a central server. However, several challenges hinder its wide application in the 6G context, such as malicious attacks and privacy snooping on local model updates, and centralization pitfalls. This work proposes a trusted architecture for supporting FL, which utilizes Distributed Ledger Technology (DLT) and Graph Neural Network (GNN), including three key features. First, a pre-processing layer employing homomorphic encryption is incorporated to securely aggregate local models, preserving the privacy of individual models. Second, given the distributed nature and graph structure between clients and nodes in the pre-processing layer, GNN is leveraged to identify abnormal local models, enhancing system security. Third, DLT is utilized to decentralize the system by selecting one of the candidates to perform the central server's functions. Additionally, DLT ensures reliable data management by recording data exchanges in an immutable and transparent ledger. The feasibility of the novel architecture is validated through simulations, demonstrating improved performance in anomalous model detection and global model accuracy compared to relevant baselines.

Original languageEnglish
Title of host publicationGLOBECOM 2023 - 2023 IEEE Global Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages56-61
Number of pages6
ISBN (Electronic)9798350310900
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE Global Communications Conference, GLOBECOM 2023 - Kuala Lumpur, Malaysia
Duration: 4 Dec 20238 Dec 2023

Publication series

NameProceedings - IEEE Global Communications Conference, GLOBECOM
ISSN (Print)2334-0983
ISSN (Electronic)2576-6813

Conference

Conference2023 IEEE Global Communications Conference, GLOBECOM 2023
Country/TerritoryMalaysia
CityKuala Lumpur
Period4/12/238/12/23

Keywords

  • 6G
  • Distributed ledger technol-ogy
  • Federated learning
  • Graph neural network
  • Homomorphic encryption
  • Secure aggregation

Fingerprint

Dive into the research topics of 'Advancing Federated Learning in 6G: A Trusted Architecture with Graph-Based Analysis'. Together they form a unique fingerprint.

Cite this