TY - JOUR
T1 - Advances in sensing ammonia from agricultural sources
AU - Insausti, Matías
AU - Timmis, Roger
AU - Kinnersley, Rob
AU - Rufino, Mariana C.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/3/1
Y1 - 2020/3/1
N2 - Reducing ammonia emissions is one of the most difficult challenges for environmental regulators around the world. About 90% of ammonia in the atmosphere comes from agricultural sources, so that improving farm practices in order to reduce these emissions is a priority. Airborne ammonia is the key precursor for particulate matter (PM2.5) that impairs human health, and ammonia can contribute to excess nitrogen that causes eutrophication in water and biodiversity loss in plant ecosystems. Reductions in excess nitrogen (N) from ammonia are needed so that farms use N resources more efficiently and avoid unnecessary costs. To support the adoption of ammonia emission mitigation practices, new sensor developments are required to identify sources, individual contributions, to evaluate the effectiveness of controls, to monitor progress towards emission-reduction targets, and to develop incentives for behavioural change. There is specifically a need for sensitive, selective, robust and user-friendly sensors to monitor ammonia from livestock production and fertiliser application. Most currently-available sensors need specialists to set up, calibrate and maintain them, which creates issues with staffing and costs when monitoring large areas or when there is a need for high frequency sampling. This paper reports advances in monitoring airborne ammonia in agricultural areas. Selecting the right method of monitoring for each agricultural activity will provide critical data to identify and implement appropriate ammonia controls. Recent developments in chemo-resistive materials allow electrochemical sensing at room temperature, and new spectroscopic methods are sensitive enough to determine low concentrations in the order of parts per billion. However, these new methods still compromise selectivity and sensitivity due to the presence of ambient dust and other interferences, and are not yet suitable to be applied in agricultural monitoring. This review considers how ammonia measurements are made and applied, including the need for sensors that are suitable for routine monitoring by non-specialists. The review evaluates how monitoring information can be used for policies and regulations to mitigate ammonia emissions. The increasing concerns about ammonia emissions and the particular needs from the agriculture sector are addressed, giving an overview of the state-of-the-art and an outlook on future developments.
AB - Reducing ammonia emissions is one of the most difficult challenges for environmental regulators around the world. About 90% of ammonia in the atmosphere comes from agricultural sources, so that improving farm practices in order to reduce these emissions is a priority. Airborne ammonia is the key precursor for particulate matter (PM2.5) that impairs human health, and ammonia can contribute to excess nitrogen that causes eutrophication in water and biodiversity loss in plant ecosystems. Reductions in excess nitrogen (N) from ammonia are needed so that farms use N resources more efficiently and avoid unnecessary costs. To support the adoption of ammonia emission mitigation practices, new sensor developments are required to identify sources, individual contributions, to evaluate the effectiveness of controls, to monitor progress towards emission-reduction targets, and to develop incentives for behavioural change. There is specifically a need for sensitive, selective, robust and user-friendly sensors to monitor ammonia from livestock production and fertiliser application. Most currently-available sensors need specialists to set up, calibrate and maintain them, which creates issues with staffing and costs when monitoring large areas or when there is a need for high frequency sampling. This paper reports advances in monitoring airborne ammonia in agricultural areas. Selecting the right method of monitoring for each agricultural activity will provide critical data to identify and implement appropriate ammonia controls. Recent developments in chemo-resistive materials allow electrochemical sensing at room temperature, and new spectroscopic methods are sensitive enough to determine low concentrations in the order of parts per billion. However, these new methods still compromise selectivity and sensitivity due to the presence of ambient dust and other interferences, and are not yet suitable to be applied in agricultural monitoring. This review considers how ammonia measurements are made and applied, including the need for sensors that are suitable for routine monitoring by non-specialists. The review evaluates how monitoring information can be used for policies and regulations to mitigate ammonia emissions. The increasing concerns about ammonia emissions and the particular needs from the agriculture sector are addressed, giving an overview of the state-of-the-art and an outlook on future developments.
KW - Ammonia
KW - Fertiliser Application
KW - Livestock production
KW - Nitrogen losses
KW - Sensors
UR - http://www.scopus.com/inward/record.url?scp=85076459304&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2019.135124
DO - 10.1016/j.scitotenv.2019.135124
M3 - Review article
C2 - 31855649
AN - SCOPUS:85076459304
SN - 0048-9697
VL - 706
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 135124
ER -