Advanced method of including housing stiffness into calculation of gear systems

Translated title of the contribution: Advanced method of including housing stiffness into calculation of gear systems

Daniel Schweigert, Uwe Weinberger, Michael Otto, Karsten Stahl

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

One of the central goals during the design of helical gear systems is the achievement of a well-distributed contact load in the gear mesh. An equal load distribution is a key factor for a high load carrying capacity, the economic use of materials and a long lifetime. Mesh misalignment can be caused by tooth deflections, manufacturing deviations or elastic deformation of the shaft-bearing system and the gearbox housing. Those deformations have to be taken into account during the design process of adequate tooth-flank geometry. Elastic deformations of gearbox housings can be significant, especially in the case of automotive applications with aluminium cases. This paper presents an advanced method of including housing stiffness into the calculation of gear systems. A validation of the approach is carried out by comparing the calculated deformations with measurements of a static test rig of a hypoid gearbox. Many calculation programs offer the opportunity to analyse the deformation behaviour of the shaft-bearing-housing system. Most of the components in these programs are described by analytic approaches. However, components that are geometrically more complex, like the housing or planet carriers cannot be represented as easily as that by analytic expressions. There are several alternatives to take into account the elasticity of those objects. One way is to model the stiffness of the bores using imported stiffness matrices. These matrices contain the elasticity of the bores itself as well as crossover influences between the bearings. The reduced stiffness matrices may be the result of a static reduction of the geometry using the finite element method (FEM). As state of the art, the reduction is mostly carried out at the centre points of the bearing bores. The proposed advanced method uses the static reduction of geometries on several points at the bores, distributed over the circumference. This approach offers a more detailed modelling of the elastic behaviour of complex geometries within the analytic deformation calculation of gear systems. To validate the advanced approach, the calculation results of the elastic deflections of the shaft-bearing-housing system is compared with measurements of a static test rig. In the course of these comparisons, the influence of different modelling methods of gearbox housings on the accuracy of the calculation results is discussed.

Translated title of the contributionAdvanced method of including housing stiffness into calculation of gear systems
Original languageEnglish
Pages (from-to)241-248
Number of pages8
JournalForschung im Ingenieurwesen/Engineering Research
Volume86
Issue number2
DOIs
StatePublished - Jun 2022

Fingerprint

Dive into the research topics of 'Advanced method of including housing stiffness into calculation of gear systems'. Together they form a unique fingerprint.

Cite this