TY - GEN
T1 - Adaptive online power-management for Bluetooth Low Energy
AU - Kindt, Philipp
AU - Yunge, Daniel
AU - Gopp, Mathias
AU - Chakraborty, Samarjit
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/8/21
Y1 - 2015/8/21
N2 - Bluetooth Low Energy is a time-slotted wireless protocol aimed towards low power communication for battery-driven devices. As a power-management capability, whenever there is less data to send, the slave is allowed to remain in a low power mode during a given number of time-slots in a row. However, since the master does not know the exact sleep behavior of the slave, it has to wake-up at every time-slot and repeat its packets until the slave is awake. As a result, applications with variable throughput lead to many energy-consuming idle-slots at the master. In such applications, usually the connection parameters are chosen considering the worst case at design time and remain constant during operation. In this paper, we propose a novel power-management framework for BLE. Rather than skipping slots at the slave side, the proposed system updates the interval between two consecutive time-slots during runtime by applying online algorithms. To avoid data-loss or high delays, the framework guarantees that constraints on latency are met and buffers never overflow. Energy measurements of three different test-cases show that up to 42 percent of the energy consumption of a BLE master can be saved with our power management system.
AB - Bluetooth Low Energy is a time-slotted wireless protocol aimed towards low power communication for battery-driven devices. As a power-management capability, whenever there is less data to send, the slave is allowed to remain in a low power mode during a given number of time-slots in a row. However, since the master does not know the exact sleep behavior of the slave, it has to wake-up at every time-slot and repeat its packets until the slave is awake. As a result, applications with variable throughput lead to many energy-consuming idle-slots at the master. In such applications, usually the connection parameters are chosen considering the worst case at design time and remain constant during operation. In this paper, we propose a novel power-management framework for BLE. Rather than skipping slots at the slave side, the proposed system updates the interval between two consecutive time-slots during runtime by applying online algorithms. To avoid data-loss or high delays, the framework guarantees that constraints on latency are met and buffers never overflow. Energy measurements of three different test-cases show that up to 42 percent of the energy consumption of a BLE master can be saved with our power management system.
UR - http://www.scopus.com/inward/record.url?scp=84954243244&partnerID=8YFLogxK
U2 - 10.1109/INFOCOM.2015.7218661
DO - 10.1109/INFOCOM.2015.7218661
M3 - Conference contribution
AN - SCOPUS:84954243244
T3 - Proceedings - IEEE INFOCOM
SP - 2695
EP - 2703
BT - 2015 IEEE Conference on Computer Communications, IEEE INFOCOM 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 34th IEEE Annual Conference on Computer Communications and Networks, IEEE INFOCOM 2015
Y2 - 26 April 2015 through 1 May 2015
ER -