TY - JOUR
T1 - Adaptive Intervention Algorithms for Advanced Driver Assistance Systems
AU - Yang, Kui
AU - Al Haddad, Christelle
AU - Alam, Rakibul
AU - Brijs, Tom
AU - Antoniou, Constantinos
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/3
Y1 - 2024/3
N2 - Advanced driver assistance systems (ADASs) have recently gained popularity as they assist vehicle operators in staying within safe boundaries, helping them thereby to prevent possible collisions. However, despite their success and development, most ADAS use common and deterministic warning thresholds for all drivers in all driving environments. This may occasionally lead to the issuance of annoying inadequate warnings, due to the possible differences between drivers, the changing environments and driver statuses, thus reducing their acceptance and effectiveness. To fill this gap, this paper proposes adaptive algorithms for commonly used warnings based on real-time traffic environments and driver status including distraction and fatigue. We proposed adaptive algorithms for headway monitoring, illegal overtaking, over-speeding, and fatigue. The algorithms were then tested using a driving simulator. Results showed that the proposed adaptive headway warning algorithm was able to automatically update the headway warning thresholds and that, overall, the proposed algorithms provided the expected warnings. In particular, three or four different warning types were designed to distinguish different risk levels. The designed real-time intervention algorithms can be implemented in ADAS to provide warnings and interventions tailored to the driver status to further ensure driving safety.
AB - Advanced driver assistance systems (ADASs) have recently gained popularity as they assist vehicle operators in staying within safe boundaries, helping them thereby to prevent possible collisions. However, despite their success and development, most ADAS use common and deterministic warning thresholds for all drivers in all driving environments. This may occasionally lead to the issuance of annoying inadequate warnings, due to the possible differences between drivers, the changing environments and driver statuses, thus reducing their acceptance and effectiveness. To fill this gap, this paper proposes adaptive algorithms for commonly used warnings based on real-time traffic environments and driver status including distraction and fatigue. We proposed adaptive algorithms for headway monitoring, illegal overtaking, over-speeding, and fatigue. The algorithms were then tested using a driving simulator. Results showed that the proposed adaptive headway warning algorithm was able to automatically update the headway warning thresholds and that, overall, the proposed algorithms provided the expected warnings. In particular, three or four different warning types were designed to distinguish different risk levels. The designed real-time intervention algorithms can be implemented in ADAS to provide warnings and interventions tailored to the driver status to further ensure driving safety.
KW - advanced driver assistance systems
KW - fatigue
KW - headway
KW - illegal overtaking
KW - over-speeding
KW - real-time interventions
UR - http://www.scopus.com/inward/record.url?scp=85188965621&partnerID=8YFLogxK
U2 - 10.3390/safety10010010
DO - 10.3390/safety10010010
M3 - Article
AN - SCOPUS:85188965621
SN - 2313-576X
VL - 10
JO - Safety
JF - Safety
IS - 1
M1 - 10
ER -