TY - GEN
T1 - Active Learning Enhances Classification of Histopathology Whole Slide Images with Attention-Based Multiple Instance Learning
AU - Sadafi, Ario
AU - Navab, Nassir
AU - Marr, Carsten
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - In many histopathology tasks, sample classification depends on morphological details in tissue or single cells that are only visible at the highest magnification. For a pathologist, this implies tedious zooming in and out, while for a computational decision support algorithm, it leads to the analysis of a huge number of small image patches per whole slide image (WSI). Attention-based multiple instance learning (MIL), where attention estimation is learned in a weakly supervised manner, has been successfully applied in computational histopathology, but it is challenged by large numbers of irrelevant patches, reducing its accuracy. Here, we present an active learning approach to the problem. Querying the expert to annotate regions of interest in a WSI guides the formation of high-attention regions for MIL. We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation. We test our approach on the CAMELYON17 dataset classifying metastatic lymph node sections in breast cancer. With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class. Active learning thus improves WSIs classification accuracy, leads to faster and more robust convergence, and speeds up the annotation process. It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
AB - In many histopathology tasks, sample classification depends on morphological details in tissue or single cells that are only visible at the highest magnification. For a pathologist, this implies tedious zooming in and out, while for a computational decision support algorithm, it leads to the analysis of a huge number of small image patches per whole slide image (WSI). Attention-based multiple instance learning (MIL), where attention estimation is learned in a weakly supervised manner, has been successfully applied in computational histopathology, but it is challenged by large numbers of irrelevant patches, reducing its accuracy. Here, we present an active learning approach to the problem. Querying the expert to annotate regions of interest in a WSI guides the formation of high-attention regions for MIL. We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation. We test our approach on the CAMELYON17 dataset classifying metastatic lymph node sections in breast cancer. With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class. Active learning thus improves WSIs classification accuracy, leads to faster and more robust convergence, and speeds up the annotation process. It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.
KW - Active Learning
KW - Multiple instance learning
KW - Pathology
KW - Uncertainty estimation
UR - http://www.scopus.com/inward/record.url?scp=85172122024&partnerID=8YFLogxK
U2 - 10.1109/ISBI53787.2023.10230685
DO - 10.1109/ISBI53787.2023.10230685
M3 - Conference contribution
AN - SCOPUS:85172122024
T3 - Proceedings - International Symposium on Biomedical Imaging
BT - 2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
PB - IEEE Computer Society
T2 - 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Y2 - 18 April 2023 through 21 April 2023
ER -