Active Learning Enhances Classification of Histopathology Whole Slide Images with Attention-Based Multiple Instance Learning

Ario Sadafi, Nassir Navab, Carsten Marr

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In many histopathology tasks, sample classification depends on morphological details in tissue or single cells that are only visible at the highest magnification. For a pathologist, this implies tedious zooming in and out, while for a computational decision support algorithm, it leads to the analysis of a huge number of small image patches per whole slide image (WSI). Attention-based multiple instance learning (MIL), where attention estimation is learned in a weakly supervised manner, has been successfully applied in computational histopathology, but it is challenged by large numbers of irrelevant patches, reducing its accuracy. Here, we present an active learning approach to the problem. Querying the expert to annotate regions of interest in a WSI guides the formation of high-attention regions for MIL. We train an attention-based MIL and calculate a confidence metric for every image in the dataset to select the most uncertain WSIs for expert annotation. We test our approach on the CAMELYON17 dataset classifying metastatic lymph node sections in breast cancer. With a novel attention guiding loss, this leads to an accuracy boost of the trained models with few regions annotated for each class. Active learning thus improves WSIs classification accuracy, leads to faster and more robust convergence, and speeds up the annotation process. It may in the future serve as an important contribution to train MIL models in the clinically relevant context of cancer classification in histopathology.

Original languageEnglish
Title of host publication2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023
PublisherIEEE Computer Society
ISBN (Electronic)9781665473583
DOIs
StatePublished - 2023
Event20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 - Cartagena, Colombia
Duration: 18 Apr 202321 Apr 2023

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2023-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference20th IEEE International Symposium on Biomedical Imaging, ISBI 2023
Country/TerritoryColombia
CityCartagena
Period18/04/2321/04/23

Keywords

  • Active Learning
  • Multiple instance learning
  • Pathology
  • Uncertainty estimation

Fingerprint

Dive into the research topics of 'Active Learning Enhances Classification of Histopathology Whole Slide Images with Attention-Based Multiple Instance Learning'. Together they form a unique fingerprint.

Cite this