TY - GEN
T1 - Active flow control in a single-stage axial compressor using tip injection and endwall boundary layer removal
AU - Dobrzynski, B.
AU - Saathoff, H.
AU - Kosyna, G.
AU - Clemen, C.
AU - Gümmer, V.
PY - 2008
Y1 - 2008
N2 - Different active flow control techniques have been investigated in a 1.5-stage axial-flow compressor. Looking at a low-speed single-stage environment, many researchers have shown that highly loaded compressors are tip critical, showing stall inception caused by short length scale disturbances (spikes). It has been shown by several authors that these disturbances are related to the spillage of endwall flow ahead of the blading (spill forward). For the present work, different tip injection configurations were investigated in order to stabilize the near casing flow, increasing the operating range of the compressor. Stall margin improvement and the impact on stage efficiency are compared and discussed. Oil flow pictures of the casing wall above the rotor and of the stator blades as well as traverse data from pneumatic 5-hole probes show the impact of flow control on rotor and stator performance. Another method of energizing the casing wall boundary layer is the removal of low energy fluid by a circumferential slot above the rotor, which was also studied experimentally. Again, the impact on compressor operating range and efficiency, as well as flow field information collected by oil flow visualization and traverse data are discussed. Comparing the different flow control techniques, it is shown that increasing stall margin is not directly linked to stage efficiency. As described in various publications, discrete tip injection is a very powerful technique as far as range extension is concerned, but it also has substantial drawbacks such as the circumferential inhomogene-ity of the rotor exit flow. These inhomogeneities may result in poor stator performance, overall resulting in a drop of stage efficiency. This problem does not occur if circumferential boundary layer removal above the rotor is used. This method however shows much less potential for increasing the operating range.
AB - Different active flow control techniques have been investigated in a 1.5-stage axial-flow compressor. Looking at a low-speed single-stage environment, many researchers have shown that highly loaded compressors are tip critical, showing stall inception caused by short length scale disturbances (spikes). It has been shown by several authors that these disturbances are related to the spillage of endwall flow ahead of the blading (spill forward). For the present work, different tip injection configurations were investigated in order to stabilize the near casing flow, increasing the operating range of the compressor. Stall margin improvement and the impact on stage efficiency are compared and discussed. Oil flow pictures of the casing wall above the rotor and of the stator blades as well as traverse data from pneumatic 5-hole probes show the impact of flow control on rotor and stator performance. Another method of energizing the casing wall boundary layer is the removal of low energy fluid by a circumferential slot above the rotor, which was also studied experimentally. Again, the impact on compressor operating range and efficiency, as well as flow field information collected by oil flow visualization and traverse data are discussed. Comparing the different flow control techniques, it is shown that increasing stall margin is not directly linked to stage efficiency. As described in various publications, discrete tip injection is a very powerful technique as far as range extension is concerned, but it also has substantial drawbacks such as the circumferential inhomogene-ity of the rotor exit flow. These inhomogeneities may result in poor stator performance, overall resulting in a drop of stage efficiency. This problem does not occur if circumferential boundary layer removal above the rotor is used. This method however shows much less potential for increasing the operating range.
UR - http://www.scopus.com/inward/record.url?scp=69949190988&partnerID=8YFLogxK
U2 - 10.1115/GT2008-50214
DO - 10.1115/GT2008-50214
M3 - Conference contribution
AN - SCOPUS:69949190988
SN - 9780791843161
T3 - Proceedings of the ASME Turbo Expo
SP - 139
EP - 148
BT - 2008 Proceedings of the ASME Turbo Expo
T2 - 2008 ASME Turbo Expo
Y2 - 9 June 2008 through 13 June 2008
ER -