TY - JOUR
T1 - Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses
AU - Napolitano, Valeria
AU - Dabrowska, Agnieszka
AU - Schorpp, Kenji
AU - Mourão, André
AU - Barreto-Duran, Emilia
AU - Benedyk, Malgorzata
AU - Botwina, Pawel
AU - Brandner, Stefanie
AU - Bostock, Mark
AU - Chykunova, Yuliya
AU - Czarna, Anna
AU - Dubin, Grzegorz
AU - Fröhlich, Tony
AU - Hölscher, Michael
AU - Jedrysik, Malwina
AU - Matsuda, Alex
AU - Owczarek, Katarzyna
AU - Pachota, Magdalena
AU - Plettenburg, Oliver
AU - Potempa, Jan
AU - Rothenaigner, Ina
AU - Schlauderer, Florian
AU - Slysz, Klaudia
AU - Szczepanski, Artur
AU - Greve-Isdahl Mohn, Kristin
AU - Blomberg, Bjorn
AU - Sattler, Michael
AU - Hadian, Kamyar
AU - Popowicz, Grzegorz Maria
AU - Pyrc, Krzysztof
N1 - Publisher Copyright:
© 2021 The Authors
PY - 2022/5/19
Y1 - 2022/5/19
N2 - The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.
AB - The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.
KW - COVID-19
KW - PL
KW - SARS-CoV-2
KW - acriflavine
KW - coronavirus
KW - drug repurposing
KW - protease
KW - protease inhibitor
KW - structural biology
UR - http://www.scopus.com/inward/record.url?scp=85122625842&partnerID=8YFLogxK
U2 - 10.1016/j.chembiol.2021.11.006
DO - 10.1016/j.chembiol.2021.11.006
M3 - Article
C2 - 35021060
AN - SCOPUS:85122625842
SN - 2451-9456
VL - 29
SP - 774-784.e8
JO - Cell Chemical Biology
JF - Cell Chemical Biology
IS - 5
ER -