Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation

Raheel Ahmad, Ghulam Destgeer, Muhammad Afzal, Jinsoo Park, Husnain Ahmed, Jin Ho Jung, Kwangseok Park, Tae Sung Yoon, Hyung Jin Sung

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

We developed a hybrid microfluidic device that utilized acoustic waves to drive functionalized microparticles inside a continuous flow microchannel and to separate particle-conjugated target proteins from a complex fluid. The acoustofluidic device is composed of an interdigitated transducer that produces high-frequency surface acoustic waves (SAW) and a polydimethylsiloxane (PDMS) microfluidic channel. The SAW interacted with the sample fluid inside the microchannel and deflected particles from their original streamlines to achieve separation. Streptavidin-functionalized polystyrene (PS) microparticles were used to capture aptamer (single-stranded DNA) labeled at one end with a biotin molecule. The free end of the customized aptamer15 (apt15), which was attached to the microparticles via streptavidin-biotin linkage to form the PS-apt15 conjugate, was used to capture the model target protein, thrombin (th), by binding at exosite I to form the PS-apt15-th complex. We demonstrated that the PS-apt15 conjugate selectively captured thrombin molecules in a complex fluid. After the PS-apt15-th complex was formed, the sample fluid was pumped through a PDMS microchannel along with two buffer sheath flows that hydrodynamically focused the sample flow prior to SAW exposure for PS-apt15-th separation from the non-target proteins. We successfully separated thrombin from mCardinal2 and human serum using the proposed acoustofluidic device.

Original languageEnglish
Pages (from-to)13313-13319
Number of pages7
JournalAnalytical Chemistry
Volume89
Issue number24
DOIs
StatePublished - 19 Dec 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Acoustic Wave-Driven Functionalized Particles for Aptamer-Based Target Biomolecule Separation'. Together they form a unique fingerprint.

Cite this