TY - JOUR
T1 - Achieving the Inhibition of Aluminum Corrosion by Dual-Salt Electrolytes for Sodium-Ion Batteries
AU - Huang, Longqing
AU - Qiu, Qian
AU - Yang, Ming
AU - Li, Haoxiang
AU - Zhu, Jialing
AU - Zhang, Wenjun
AU - Wang, Shuai
AU - Xia, Lan
AU - Müller-Buschbaum, Peter
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024
Y1 - 2024
N2 - Sodium bis(fluorosulfonyl)imide (NaFSI) electrolytes are renowned for their superior physicochemical and electrochemical properties, making them ideal for high-performance sodium-ion batteries (SIBs). However, severe oxidative dissolution of aluminum current collectors (commonly known as Al corrosion) in NaFSI-based electrolytes occurs at high potentials. To address this challenge, aiming to understand the Al corrosion mechanism and develop strategies to inhibit corrosion, we propose dual-salt electrolytes using 0.8 mol L-1 (M) NaFSI and 0.2 M of a second fluorine-containing sodium salt dissolved in EC/PC solutions (1:1, v/v) to construct an insoluble deposits layer on the Al. Dual-salt electrolytes adopting a second sodium salt capable of passivating the Al collector have been extensively investigated through various techniques, such as cyclic voltammetry, scanning electron microscopy, chronoamperometry, X-ray photoelectron spectroscopy, and charge-discharge tests. Our findings demonstrate that introducing sodium difluoro(oxalato)borate (NaDFOB) into the NaFSI electrolytes inhibits Al corrosion, which is attributed to the formation of insoluble deposits of Al-F (AlF3) and B-F containing polymers. Moreover, the capacity retention of Na||Na3V2(PO4)3 (NVP) cells using the NaFSI-NaDFOB dual-salt electrolyte reaches 99.2% along with a Coulombic efficiency over 99.3% at a 1 C rate after 200 cycles. This research provides a practical solution for passivating Al collectors in SIBs with NaFSI electrolytes and promotes the development of sodium batteries with long calendar lifetimes.
AB - Sodium bis(fluorosulfonyl)imide (NaFSI) electrolytes are renowned for their superior physicochemical and electrochemical properties, making them ideal for high-performance sodium-ion batteries (SIBs). However, severe oxidative dissolution of aluminum current collectors (commonly known as Al corrosion) in NaFSI-based electrolytes occurs at high potentials. To address this challenge, aiming to understand the Al corrosion mechanism and develop strategies to inhibit corrosion, we propose dual-salt electrolytes using 0.8 mol L-1 (M) NaFSI and 0.2 M of a second fluorine-containing sodium salt dissolved in EC/PC solutions (1:1, v/v) to construct an insoluble deposits layer on the Al. Dual-salt electrolytes adopting a second sodium salt capable of passivating the Al collector have been extensively investigated through various techniques, such as cyclic voltammetry, scanning electron microscopy, chronoamperometry, X-ray photoelectron spectroscopy, and charge-discharge tests. Our findings demonstrate that introducing sodium difluoro(oxalato)borate (NaDFOB) into the NaFSI electrolytes inhibits Al corrosion, which is attributed to the formation of insoluble deposits of Al-F (AlF3) and B-F containing polymers. Moreover, the capacity retention of Na||Na3V2(PO4)3 (NVP) cells using the NaFSI-NaDFOB dual-salt electrolyte reaches 99.2% along with a Coulombic efficiency over 99.3% at a 1 C rate after 200 cycles. This research provides a practical solution for passivating Al collectors in SIBs with NaFSI electrolytes and promotes the development of sodium batteries with long calendar lifetimes.
KW - aluminum collector
KW - corrosion
KW - dual-salt electrolytes
KW - sodium bis(fluorosulfony)imide (NaFSI)
KW - sodium-ion batteries
UR - http://www.scopus.com/inward/record.url?scp=85201760366&partnerID=8YFLogxK
U2 - 10.1021/acsami.4c10970
DO - 10.1021/acsami.4c10970
M3 - Article
AN - SCOPUS:85201760366
SN - 1944-8244
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
ER -